Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2011, Vol. 31 Issue (7): 72-78    
研究报告     
蜡状芽孢杆菌群中规律成簇间隔短回文重复序列的生物信息学分析
王琰1, 喻婵1, 王阶平1, 邱宁1, 何进1, 孙明1, 张青叶1,2
1. 农业微生物学国家重点实验室 微生物农药国家工程研究中心 华中农业大学生命科学技术学院 武汉 430070;
2. 华中农业大学理学院 武汉 430070
Bioinformatics Analysis of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) in the Genomes of Bacillus cereus Group
WANG Yan1, YU Chan1, WANG Jie-ping1, QIU Ning1, HE Jin1, SUN Ming1, ZHANG Qing-ye1,2
1. State Key Laboratory of Agricultural Microbiology and National Engineering Research Center of Microbial Pesticides, College of Life Science, Huazhong Agricultural University, Wuhan 430070, China;
2. School of Science, Huazhong Agriculture University, Wuhan 430070, China
 全文: PDF(954 KB)   HTML
摘要:

规律成簇间隔短回文重复序列(clustered regularly interspaced short palindromic repeats,CRISPR)是最近发现针对噬菌体等外源遗传物质的获得性和可遗传性的新型原核生物防御系统。通过BLAST、多序列比对、RNA二级结构预测等生物信息学方法对已经完成全基因组测序的蜡状芽孢杆菌群24个菌株进行CRISPR的系统分析,结果表明:42%的菌株含有该结构;8个CRISPR座位的正向重复序列可以形成RNA二级结构,提示正向重复序列可能介导外源DNA或RNA与CAS编码蛋白的相互作用;31%的间区序列与噬菌体、质粒、蜡状芽孢杆菌群基因组序列具有同源性,进一步验证间区序列很可能来源于外源可移动遗传因子。由于大部分蜡状芽孢杆菌群菌株含有多个前噬菌体和质粒,通过对蜡状芽孢杆菌群CRISPR的分析,为揭示其对宿主菌与噬菌体,以及宿主菌与质粒间的关系奠定基础。

关键词: 蜡状芽孢杆菌群规律成簇间隔短回文重复序列前导序列重复序列间区序列    
Abstract:

CRISPR is a novel type of microbial defense system, which is unique in that it is invader-specific, adaptive and heritable. It is a recent breakthrough in understanding host-virus interactions. Bioinformatics methods including BLAST, multiple sequence alignment, and RNA structure prediction was used to analyze the CRISPR structures of 24 Bacillus cereus group genomes. CRISPR existed in 42% strains. Two types of RNA secondary structures derived from the repeat sequences were predicted, and demonstrated that stem-loop secondary structure might function in mediating the interaction between foreign genetic elements and CAS-encoded proteins. The sequence homologous among 31% spacer, phage, plasmid and the genomes of Bacillus cereus group further verified that spacer was likely to come from the exogenous mobile genetic factor. As most of the Bacillus cereus group strains contain multiple plasmids and prophages, the CRISPR research in Bacillus cereus group by this study would be help to reveal relationship between host strains with plasmid or host strains with phage.

Key words: Bacillus cereus group    CRISPR    Leader    Repeat    Spacer
收稿日期: 2011-04-02 出版日期: 2011-07-25
ZTFLH:  Q52  
基金资助:

国家自然科学基金资助项目(30860123)

服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
王琰
喻婵
王阶平
邱宁
何进
孙明
张青叶

引用本文:

王琰, 喻婵, 王阶平, 邱宁, 何进, 孙明, 张青叶. 蜡状芽孢杆菌群中规律成簇间隔短回文重复序列的生物信息学分析[J]. 中国生物工程杂志, 2011, 31(7): 72-78.

WANG Yan, YU Chan, WANG Jie-ping, QIU Ning, HE Jin, SUN Ming, ZHANG Qing-ye. Bioinformatics Analysis of Clustered Regularly Interspaced Short Palindromic Repeats (CRISPR) in the Genomes of Bacillus cereus Group. China Biotechnology, 2011, 31(7): 72-78.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/        https://manu60.magtech.com.cn/biotech/CN/Y2011/V31/I7/72


[1] Garneau J E, Dupuis M E, Villion M, et al. The CRISPR/Cas bacterial immune system cleaves bacteriophage and plasmid DNA. Nature, 2010, 468(7320):67-71.

[2] Al-Attar S, Westra E R, van der Oost J, et al. Review: Clustered regularly interspaced short palindromic repeats (CRISPRs): the hallmark of an ingenious antiviral defense mechanism in prokaryotes. Biol Chem, 2011, 392(4):277-289.

[3] Kunin V, Sorek R, Hugenholtz P. Evolutionary conservation of sequence and secondary structures in CRISPR repeats. Genome Biol, 2007, 8(4):R61.

[4] Lillestol R K, Redder P, Garrett R A, et al. A putative viral defence mechanism in archaeal cells. Archaea, 2006, 2(1):59-72.

[5] Shah S A, Hansen N R, Garrett R A. Distribution of CRISPR spacer matches in viruses and plasmids of crenarchaeal acidothermophiles and implications for their inhibitory mechanism. Biochem Soc Trans, 2009, 37(Pt 1):23-28.

[6] Jansen R, Embden J D, Gaastra W, et al. Identification of genes that are associated with DNA repeats in prokaryotes. Mol Microbiol, 2002, 43(6):1565-1575.

[7] Pul U, Wurm R, Arslan Z, et al. Identification and characterization of E.coli CRISPR-cas promoters and their silencing by H-NS. Mol Microbiol, 2010, 75(6):1495-1512.

[8] Haft D H, Selengut J, Mongodin E F, et al. A guild of 45 CRISPR-associated (Cas) protein families and multiple CRISPR/Cas subtypes exist in prokaryotic genomes. PLoS Comput Biol, 2005, 1(6):e60.

[9] Zhu Y, Shang H, Zhu Q, et al. Complete genome sequence of Bacillus thuringiensis serovar. finitimus Strain YBT-020. J Bacteriol, 2011, 193(9):2379-2380.

[10] He J, Shao X, Zheng H, et al. Complete genome sequence of Bacillus thuringiensis mutant strain BMB171. J Bacteriol, 2010, 192(15):4074-4075.

[11] Grissa I, Vergnaud G, Pourcel C. CRISPRFinder: a web tool to identify clustered regularly interspaced short palindromic repeats. Nucleic Acids Res, 2007, 35(Pp):W52-W57.

[12] Grissa I, Vergnaud G, Pourcel C. The CRISPRdb database and tools to display CRISPRs and to generate dictionaries of spacers and repeats. BMC Bioinformatics, 2007, 8:172.

[13] Delcher A L, Harmon D, Kasif S, et al. Improved microbial gene identification with GLIMMER. Nucleic Acids Res, 1999, 27(23):4636-4641.

[14] Larkin M A, Blackshields G, Brown N P, et al. Clustal W and Clustal X version 2.0. Bioinformatics, 2007, 23(21):2947-2948.

[15] Mathews D H, Sabina J, Zuker M, et al. Expanded sequence dependence of thermodynamic parameters improves prediction of RNA secondary structure. J Mol Biol, 1999, 288(5):911-940.

[16] Tang T H, Bachellerie J P, Rozhdestvensky T, et al. Identification of 86 candidates for small non-messenger RNAs from the archaeon Archaeoglobus fulgidus. Proc Natl Acad Sci USA, 2002, 99(11):7536-7541.

[17] Zhong C, Peng D, Ye W, et al. Determination of plasmid copy number reveals the total plasmid DNA amount is greater than the chromosomal DNA amount in Bacillus thuringiensis YBT-1520. PLoS One, 2011,6(1):e16025.

[1] 徐文娟,宋丹,陈丹,龙辉,陈禹保,龙峰. 基于CRISPR/Cas生物传感原理的病原菌检测技术研究进展*[J]. 中国生物工程杂志, 2021, 41(8): 67-74.
[2] 秦瑶, 赵鸿彦, 张文航, 王冬梅. miR146a通过Smad4参与多柔比星的心肌细胞毒性作用[J]. 中国生物工程杂志, 2017, 37(6): 31-36.
[3] 李建彬, 米志强, 安小平, 谭莉, 陈斌, 王晓娜, 范华昊, 张文慧, 张博, 方祥, 童贻刚. shRNA随机文库结合TK自杀基因筛选靶向HIV-1LTR相关宿主因子[J]. 中国生物工程杂志, 2012, 32(09): 48-54.
[4] 罗清菊,李杰,闫红霞,卢雪景,吕玉民,薛乐勋. 杜氏盐藻DCA1启动子内GT重复序列在盐诱导调控中的作用[J]. 中国生物工程杂志, 2009, 29(07): 50-55.
[5] 唐冬生, 严霞, 张勇, 张细权, 李芳, 蒋泓, 李月琴, 周天鸿. 高GC含量的鳜鱼rRNA基因家族的克隆[J]. 中国生物工程杂志, 2005, 25(8): 60-64.
[6] 李子银, 胡会庆. 农杆菌介导的植物遗传转化进展[J]. 中国生物工程杂志, 1998, 18(1): 22-26,16.
[7] 洪德军, 陈受宜. 染色体端粒研究进展[J]. 中国生物工程杂志, 1993, 13(4): 1-6.
[8] 游哲, 李维琪. 电镜技术在核酸分子杂交研究中的应用[J]. 中国生物工程杂志, 1993, 13(1): 38-41.
[9] 费云标. 抗冻蛋白基因结构与基因工程[J]. 中国生物工程杂志, 1992, 12(3): 33-36.
[10] 费云标. 抗冻蛋白基因结构与基因工程[J]. 中国生物工程杂志, 1992, 12(3): 33-36.
[11] EleanorRoosevelt, 高法恬, 莫鑫泉. 人基因组的结构[J]. 中国生物工程杂志, 1988, 8(5): 45-51.
[12] 王为先. 关于中度重复DNA——基因的扩增、变异及迁移[J]. 中国生物工程杂志, 1986, 6(4): 84-86.
[13] ChristopherA.CuUis, CarolJ.Rivin, VirginiaWalbot, 王忆平. 一种检测真核生物基因中重复序列拷贝数的快速步骤[J]. 中国生物工程杂志, 1985, 5(3): 45-48.
[14] H.P.Dring, 何丰. BMcCIintock的控制因子:目前在分子水平上的研究[J]. 中国生物工程杂志, 1985, 5(3): 59-64.
[15] 陆德如. 细菌转座子及其在基因工程中的应用[J]. 中国生物工程杂志, 1983, 3(3): 17-22.