Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2013, Vol. 33 Issue (1): 122-127    
综述     
海藻酸转化生物乙醇研究进展
钱龙1, 唐丽薇1, 黄庶识2, 伊日布斯1
1. 昆明理工大学生命科学与技术学院 生物转化研究室 昆明 650500;
2. 广西科学院 南宁 530007
Research Progress of Bioethanol from Alginate Fermentation
QIAN Long1, TANG Li-wei1, HUANG Shu-shi2, Chagan Irbis1
1. Laboratory of Bioconvertion, Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China;
2. Guangxi Academy of Sciences, Nanning 530007, China
 全文: PDF(488 KB)   HTML
摘要: 作为第三代生物燃料,大型褐藻类生物质转化燃料乙醇的研究受到广泛的关注。但是,现有的乙醇工业菌株并不能利用褐藻中的主要成分海藻酸,这个问题是海藻生物乙醇实现工业化生产的主要技术难关。近几年随着对海藻酸裂解酶和海藻酸降解菌代谢途径的深入研究,科研人员构建了不同的海藻酸发酵菌株,为高效转化大型海藻生产生物乙醇提供了可行的技术基础。这篇文章对海藻酸资源概况和海藻酸转化生物乙醇存在的科学问题及其研究进展进行了综述。
关键词: 海藻酸海藻酸裂解酶海藻酸代谢途径第三代生物乙醇    
Abstract: As the third-generation biofuel, the bioethanol from macroalgae biomass fermentation have received widespread attention. However, the present ethanol industry strains were not able to utilize alginate that is the main ingredient in seaweed. This is one of the major technical difficulties to impede to achieve the industrial production of alginate bio-ethanol. In recent years, the cleavage enzyme and alginate degrading bacteria metabolic pathways have been studied in depth. The researchers constructed different alginate fermentation strains, and provided a viable technological support for the efficient conversion from alginate to bio-ethanol. This article reviewed resource profile of alginate and the scientific issues of bioethanol production by fermentation with alginate.
Key words: Alginate    Alginate lyase    Alginate metabolic pathways    The third-generation biofuel
收稿日期: 2012-11-02 出版日期: 2013-01-25
ZTFLH:  Q815  
基金资助: 广西自然科学基金重点资助项目(2010GXNSFD013029)
通讯作者: 伊日布斯     E-mail: irbisc@gmail.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
钱龙
唐丽薇
伊日布斯
黄庶识

引用本文:

钱龙, 唐丽薇, 黄庶识, 伊日布斯. 海藻酸转化生物乙醇研究进展[J]. 中国生物工程杂志, 2013, 33(1): 122-127.

QIAN Long, TANG Li-wei, HUANG Shu-shi, Chagan Irbis. Research Progress of Bioethanol from Alginate Fermentation. China Biotechnology, 2013, 33(1): 122-127.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/        https://manu60.magtech.com.cn/biotech/CN/Y2013/V33/I1/122

[1] Rajeendernath P, Donald J B. Composition and block structure of alginates from New Zealand brown seaweeds. Carbohydrate Research, 1996, 293(1):119-132.
[2] 纪明侯, 张燕霞. 我国经济褐藻的化学成分研究. 海洋与湖沼, 1962, 4(3-4):161-167. Ji M H, Zhang Y X, Study on the chemical composition of the chinese economi biown seaweeals, Oceanologia Etlimnologin Sinica, 1962, 4(3-4):161-167.
[3] 张菊清.大型海藻的经济价值. 舟山师专学报, 1998, 1:76-79. Zhang J Q. The economic value of seaweed. Joarnal of Zhoushan Nornal School, 1998, 1:76-79.
[4] Roesijadi G, Jones S B, Snowden-Swan L J, et al. Macroalgae as a biomass feedstock: a preliminary analysis(R). Washington: Pacific Northwest National Laboratory, 2010.
[5] 范晓, 韩丽君, 周天成, 等. 中国沿海经济海藻化学成份的测定. 海洋与湖沼, 1995, 26(2):199-207. Fan X, Han L J, Zhou T C, et al. Chemical compesition ofecoromic seaweats from the coast of china. Oceandogia Etlimologia Sinica, 1995, 26(2):199-207.
[6] Ge L L, Wang P, Mou H J.Study on saccharification techniques of seaweed wastes for the transformation of ethanol. Renewable Energy, 2011, 36(1):84-89.
[7] Haug A, Larsen B, Smidsrød O. Studies on the sequence of uronic acid residues in alginic acid. Acta Chemica Scandinavica, 1967, 21:691-704.
[8] Park H H, Kam N, Lee E Y, et al. Saccharification of alginate by using exolytic oligoalginate lyase from marine bacterium Sphingomonas sp. MJ-3. Journal of Industrial and Engineering Chemistry, 2011, 17(5-6):853-858.
[9] Lin T Y, Hass W Z. Pathway of alginic acid synthesis in the marine brown alga, Fucus gardneri Silva. J Biol Chem, 1966, 241(22):5284-5297.
[10] Rahman M M, Inoue A, Tanaka H. Isolation and characterization of two alginate lyase isozymes, AkAly28 and AkAly33, from the common sea hare Aplysia kurodai. Comparative Biochemistry and Physiology, Part B. 2010, 157(4):317-325.
[11] Lundqvist L C, Jam M, Barbeyron T, et al. Substrate specificity of the recombinant alginate lyase from the marine bacteria Pseudomonas alginovora. 2012, 352:44-50.
[12] Díaz-Barrera A, Soto E, Altamirano C. Alginate production and alg8 gene expression by Azotobacter vinelandii in continuous cultures. Journal of Industrial Microbiology & Biotechnology, 2012, 39(4):613-621.
[13] Li J W, Dong S, Song J. Purification and characterization of a bifunctional alginate lyase from Pseudoalteromonas sp. SM0524. Marine Drugs, 2011, 9(1):109-123.
[14] Hamza A, Piao Y L, Kim M S, et al. Insight into the binding of the wild type and mutated alginate lyase (AlyVI) with its substrate: A computational and experimental study. Biochimica Biophysica Acta (BBA) - Proteins and Proteomics, 2011,1814(12):1739-1747.
[15] In Lee S, Choi S H, Lee E Y, et al. Molecular cloning, purification, and characterization of a novel polyMG-specific alginate lyase responsible for alginate MG block degradation in Stenotrophomas maltophilia KJ-2. Appl Microbiol Biotechnol, 2012, 95(6):1643-1653.
[16] Rahman M M, Inoue A, Tanaka H, et al. cDNA cloning of an alginate lyase from a marine gastropod Aplysia kurodai and assessment of catalytically important residues of this enzyme. Biochimie. 2011,93(10):1720-1730.
[17] Rahman M M, Wang L, Inoue A, et al. cDNA cloning and bacterial expression of a PL-14 alginate lyase from a herbivorous marine snail Littorina brevicula. Carbohydr Res. 2012, 360:69-77.
[18] Kim H T, Chung J H, Wang D, et al. Depolymerization of alginate into a monomeric sugar acid using Alg17C, an exo-oligoalginate lyase cloned from Saccharophagus degradans 2-40. Appl Microbiol Biotechnol, 2012 Mar, 93(5):2233-2239.
[19] Schaumann K, Weide G. Enzymatic degradation of alginate by marine fungi. Hydrobiologia, 1990, 204-205(1): 589-596.
[20] Wong T Y, Preston L A, Schiller N L. Alginate lyase: review of major sources and enzyme characteristics, structure-function analysis, biological roles, and applications. The Annual Review of Microbiology. 2000, 54:289-340.
[21] Uchimura K, Miyazaki M, Nogi Y,et al. Cloning and Sequencing of Alginate Lyase Genes from Deep-Sea Strains of Vibrio and Agarivorans and Characterization of a New Vibrio Enzyme. Mar Biotechnol (NY). 2010,12(5):526-533.
[22] Li J W, Dong S, Song J, et al. Purification and Characterization of a Bifunctional Alginate Lyase from Pseudoalteromonas sp. SM0524. Marine Drugs. 2011, 9(1):109-123.
[23] Schiller N L, Monday S R, Boyd C M, et al. Characterization of the Pseudomonas aeruginosa Alginate Lyase Gene (algL): Cloning, Sequencing, and Expression in Escherichia coli. J Bacteriol. 1993, 175(15):4780-4789.
[24] Duan G, Han F, Yu W. Cloning, sequence analysis, and expression of gene alyPI encoding an alginate lyase from marine bacterium Pseudoalteromonas sp. CY24 2009. Can J Microbiol. 2009,55(9):1113-1118.
[25] Hisano T, Yonemoto Y, Yamashita T. Direct uptake of alginate molecules through a pit on the bacterial cell surface: a novel mechanism for the uptake of macromolecules. Journal of Fermentation and Bioengineering, 1995, 79(6):538-544.
[26] Hashimoto W, He J, Wada Y, et al. Proteomics-based identification of outer-membrane proteins responsible for import of macromolecules in Sphingomonas sp. A1: alginate-binding flagellin on the cell surface. Biochemistry, 2005, 44(42):13783-13794.
[27] Momma K, Okamoto M, Mishima Y, et al. Direct evidence for Sphingomonas sp. A1 periplasmic proteins as macromolecule-binding proteins associated with ABC transporter: molecular insights into alginate transport in the periplasm. Biochemistry, 2005, 44(13):5053-5064.
[28] Momma K, Okamoto M, Mishima Y, et al. A novel bacterial ATP-binding cassette transporter system that allows uptake of macromolecules. Journal of Bacteriology, 2000, 182(4):3998-4004.
[29] Yoon H J, Hashimoto W, Miyake O, et al. Overexpression in Escherichia coli, purification, and characterization of Sphingomonas sp. A1 alginate lyases. Protein Expr Purif, 2000, 19(1):84-90.
[30] Hashimoto W, Miyake O, Momma K, et al. Molecular identification of oligoalginate lyase of Sphingomonas sp. strain A1 as one of the enzymes required for complete depolymerization of alginate. J Bacteriol, 2000, 182 (16):4572-4577.
[31] Takase R, Ochiai A, Mikami B, et al. Molecular identification of unsaturated uronate reductase prerequisite for alginate metabolism in Sphingomonas sp. A1. Biochimica Biophysica Acta, 2010, 1804(9):1925-1936.
[32] Wargacki A J, Leonard E, Win M N,et al. An engineered microbial platform for direct biofuel production from brown macroalgae. Science, 2012, 335(6066):308-313.
[33] Horn S J, Aasen I M. Ethanol production from seaweed extract. Journal of Industrial Microbiology & Biotechnology, 2000, 25(5):249-254.
[34] Adams J M, Gallagher J A, Donnison I S. Fermentation study on Saccharina latissima for bioethanol production considering variable pre-treatments. Journal of Applied Phycology, 2009, 21(5):569-574.
[35] Takeda H, Yoneyama F, Kawai S, et al. Bioethanol production from marine biomass alginate by metabolically engineered bacteria. Energy & Environmental Science, 2011, 7:2575-2581.
[1] 袁小晶,尹海梦,樊晓玮,何俊林,郝石磊,季金苟. 角蛋白/海藻酸钠/聚丙烯酰胺水凝胶皮肤敷料的制备及创口修复研究[J]. 中国生物工程杂志, 2021, 41(8): 17-24.
[2] 徐珊,李任强,张继福,张云,孙爱君,胡云峰. 乙二醇缩水甘油醚交联海藻酸钠-羧甲基纤维素钠固定化脂肪酶 *[J]. 中国生物工程杂志, 2017, 37(12): 77-83.
[3] 崔巍,沈秉谦,杨胜利. 树突状细胞对海藻酸钙纳米胶囊的吞噬作用与功能诱导[J]. 中国生物工程杂志, 2008, 28(7): 26-31.
[4] 郑克孝,崔巍,沈秉谦,杨胜利. 具有佐剂效果的海藻酸钙纳米胶囊制备[J]. 中国生物工程杂志, 2008, 28(1): 49-54.
[5] 王嫣,陈小菊,王兰,左国伟,寇小琴,谭启华,周兰,陈文直. 在海藻酸钠凝胶上诱导骨髓间充质干细胞分化为成骨细胞[J]. 中国生物工程杂志, 2006, 26(09): 38-42.
[6] 秦国奎, 张玉忠, 陈秀兰, 周百成. 海藻酸盐裂解酶研究进展[J]. 中国生物工程杂志, 2004, 24(2): 26-29,33.
[7] 贾月, 白志辉, 弓爱君, 张洪勋. 果胶酶亲和吸附剂的制备及其性能比较[J]. 中国生物工程杂志, 2004, 24(1): 70-73.
[8] 王勇, 解玉冰, 马小军. 壳聚糖/海藻酸钠生物微胶囊的研究进展[J]. 中国生物工程杂志, 1999, 19(2): 13-16,20.
[9] 王建龙, 周定. 固定化细胞凝胶内扩散行为研究进展[J]. 中国生物工程杂志, 1993, 13(2): 46-48.
[10] 杨惠芳. 固定化细胞技术在废水处理中的应用[J]. 中国生物工程杂志, 1992, 12(4): 30-32.
[11] 杨惠芳. 固定化细胞技术在废水处理中的应用[J]. 中国生物工程杂志, 1992, 12(3): 30-32.
[12] 许光学, 卢泽俭, 林少琨, 林尚安. 人工种子种皮的研究现状[J]. 中国生物工程杂志, 1990, 10(5): 14-23.
[13] 罗明典. 固定化细胞技术应用于啤酒、酒精生产[J]. 中国生物工程杂志, 1987, 7(1): 33-36.