Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2023, Vol. 43 Issue (10): 43-51    DOI: 10.13523/j.cb.2304037
    
Advance in Metabolite-mediated Non-enzymatic Post-translational Modifications
DONG Yuan-yuan,BAO Qiu-yu,WANG De-xiang,WEN Hong-tao,YANG Xing-chao,WAN Ning**(),YE Hui**()
Key Laboratory of Drug Metabolism and Pharmacokinetics, China Pharmaceutical University, Nanjing 210009, China
Download: HTML   PDF(771KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Endogenous small molecules play vital roles in the cell lifespan, such as supplying the energy and substrates for biological processes and mediating cellular communication. Previous studies have shown that some endogenous reactive molecules can non-enzymatically modify proteins via spontaneous chemical reactions, thereby regulating protein structure and functions and participating in various cellular processes. Recently, the rapid development of proteomics technology for capturing non-enzymatically modified target proteins contributes to elucidating the function of the modified target protein. This review focuses on reversible and irreversible non-enzymatic covalent modifications (NECMs) produced by active metabolites, respectively, and introduces the formation mechanism of NECMs and the application of proteomics in the discovery of new post-translational modifications (PTMs) and the elucidation of metabolites-regulated protein functions.



Key wordsReactive metabolite      Non-enzymatic covalent modifications      Proteomics     
Received: 18 April 2023      Published: 02 November 2023
ZTFLH:  Q816  
Cite this article:

DONG Yuan-yuan, BAO Qiu-yu, WANG De-xiang, WEN Hong-tao, YANG Xing-chao, WAN Ning, YE Hui. Advance in Metabolite-mediated Non-enzymatic Post-translational Modifications. China Biotechnology, 2023, 43(10): 43-51.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2304037     OR     https://manu60.magtech.com.cn/biotech/Y2023/V43/I10/43

Fig.1 Structures of the common LDEs and carbonylation reactions (a) Structures of the common LDEs (b) Reaction pathways of ACR with nucleophilic amino acids (cysteine, lysine, histidine)
Fig.2 Workflow of ABPP analysis The ABPP technology is based on activity-based probes (ABPs) which mimic the chemical structure of reactive metabolites to discover the modified target proteins
Fig.3 The formation of glycation on nucleophilic amino acids (a) The reactions between MGO and nucleophilic amino acids (arginine and lysine) (b) The formation of mercaptomethylimidazole modification
Fig.4 The formation of succination on cysteine
Fig.5 Non-enzymatic acylation mediated by acyl-CoA
Fig.6 Non-enzymatic lactoylation mediated by LGSH (a) The formation of LGSH (b) The formation of non-enzymatic acylation
Fig.7 Non-enzymatic phosphorylation (a) The formation of polyphosphorylation (b) The formation of pyrophosphorylation
修饰类型 修饰名称 代谢物 修饰的位点 参考文献
不可逆的NECMs 羰基化修饰 脂质过氧化产物 半胱氨酸、赖氨酸和组氨酸 [11-12]
糖化修饰 糖类及糖的衍生物 赖氨酸、精氨酸 [15-16]
琥珀酸化修饰 琥珀酸 半胱氨酸 [22]
可逆的NECMs 乙酰化修饰 乙酰辅酶A、酰基磷酸酯 赖氨酸、半胱氨酸 [30]
琥珀酰化修饰 琥珀酰辅酶A 赖氨酸 [33]
其他酰化修饰 代谢物酰基辅酶A 赖氨酸 [34?-36]
乳酰化修饰 乳酰化谷胱甘肽 赖氨酸 [37]
多磷酸化修饰 多聚磷酸盐 赖氨酸 [40]
焦磷酸化修饰 二磷酸肌醇聚磷酸盐 磷酸化的丝氨酸 [4,41]
Table 1 The non-enzymatic covalent modifications induced by active metabolites
[1]   Qin W, Yang F, Wang C. Chemoproteomic profiling of protein-metabolite interactions. Current Opinion in Chemical Biology, 2020, 54: 28-36.
doi: S1367-5931(19)30122-X pmid: 31812894
[2]   Yang F, Wang C. Profiling of post-translational modifications by chemical and computational proteomics. Chemical Communications, 2020, 56(88): 13506-13519.
doi: 10.1039/d0cc05447j pmid: 33084662
[3]   Moellering R E, Cravatt B F. Functional lysine modification by an intrinsically reactive primary glycolytic metabolite. Science, 2013, 341(6145): 549-553.
doi: 10.1126/science.1238327 pmid: 23908237
[4]   Harmel R, Fiedler D. Features and regulation of non-enzymatic post-translational modifications. Nature Chemical Biology, 2018, 14(3): 244-252.
doi: 10.1038/nchembio.2575 pmid: 29443975
[5]   Maksimovic I, David Y. Non-enzymatic covalent modifications as a new chapter in the histone code. Trends in Biochemical Sciences, 2021, 46(9): 718-730.
doi: 10.1016/j.tibs.2021.04.004 pmid: 33965314
[6]   Khalid M, Petroianu G, Adem A. Advanced glycation end products and diabetes mellitus: mechanisms and perspectives. Biomolecules, 2022, 12(4): 542.
doi: 10.3390/biom12040542
[7]   Wu Z J, Jankowski V, Jankowski J. Irreversible post-translational modifications: emerging cardiovascular risk factors. Molecular Aspects of Medicine, 2022, 86: 101010.
doi: 10.1016/j.mam.2021.101010
[8]   Saeed M, Kausar M A, Singh R, et al. The role of glyoxalase in glycation and carbonyl stress induced metabolic disorders. Current Protein & Peptide Science, 2020, 21(9): 846-859.
[9]   Mills E L, Harmon C, Jedrychowski M P, et al. UCP1 governs liver extracellular succinate and inflammatory pathogenesis. Nature Metabolism, 2021, 3(5): 604-617.
doi: 10.1038/s42255-021-00389-5 pmid: 34002097
[10]   Scherer H U, van der Woude D, Toes R E M. From risk to chronicity: evolution of autoreactive B cell and antibody responses in rheumatoid arthritis. Nature Reviews Rheumatology, 2022, 18(7): 371-383.
doi: 10.1038/s41584-022-00786-4 pmid: 35606567
[11]   Chen Y, Qin W, Wang C. Chemoproteomic profiling of protein modifications by lipid-derived electrophiles. Current Opinion in Chemical Biology, 2016, 30: 37-45.
doi: S1367-5931(15)00127-1 pmid: 26625013
[12]   Chen Y, Cong Y, Quan B Y, et al. Chemoproteomic profiling of targets of lipid-derived electrophiles by bioorthogonal aminooxy probe. Redox Biology, 2017, 12: 712-718.
doi: S2213-2317(17)30206-9 pmid: 28411555
[13]   Vila A, Tallman K A, Jacobs A T, et al. Identification of protein targets of 4-hydroxynonenal using click chemistry for ex vivo biotinylation of azido and alkynyl derivatives. Chemical Research in Toxicology, 2008, 21(2): 432-444.
doi: 10.1021/tx700347w
[14]   Chen Y, Liu Y, Lan T, et al. Quantitative profiling of protein carbonylations in ferroptosis by an aniline-derived probe. Journal of the American Chemical Society, 2018, 140(13): 4712-4720.
doi: 10.1021/jacs.8b01462 pmid: 29569437
[15]   Ahmad S, Khan M Y, Rafi Z, et al. Oxidation, glycation and glycoxidation: the vicious cycle and lung cancer. Seminars in Cancer Biology, 2018, 49: 29-36.
doi: 10.1016/j.semcancer.2017.10.005
[16]   Hellwig M, Henle T. Baking, ageing, diabetes:a short history of the Maillard reaction. Angewandte Chemie International Edition, 2014, 53(39): 10316-10329.
[17]   Yuan T, Yang T, Chen H, et al. New insights into oxidative stress and inflammation during diabetes mellitus-accelerated atherosclerosis. Redox Biology, 2019, 20: 247-260.
doi: S2213-2317(18)30737-7 pmid: 30384259
[18]   Zheng Q F, Omans N D, Leicher R, et al. Reversible histone glycation is associated with disease-related changes in chromatin architecture. Nature Communications, 2019, 10(1): 1289.
doi: 10.1038/s41467-019-09192-z pmid: 30894531
[19]   Bollong M J, Lee G, Coukos J S, et al. A metabolite-derived protein modification integrates glycolysis with KEAP1-NRF2 signalling. Nature, 2018, 562(7728): 600-604.
doi: 10.1038/s41586-018-0622-0
[20]   Coukos J S, Lee C W, Pillai K S, et al. Widespread, reversible cysteine modification by methylglyoxal regulates metabolic enzyme function. ACS Chemical Biology, 2023, 18(1): 91-101.
doi: 10.1021/acschembio.2c00727 pmid: 36562291
[21]   Sanghvi V R, Leibold J, Mina M, et al. The oncogenic action of NRF 2 depends on de-glycation by fructosamine-3-kinase. Cell, 2019, 178(4): 807-819, e21.
doi: S0092-8674(19)30830-X pmid: 31398338
[22]   Alderson N L, Wang Y P, Blatnik M, et al. S-(2-succinyl)cysteine: a novel chemical modification of tissue proteins by a Krebs cycle intermediate. Archives of Biochemistry and Biophysics, 2006, 450(1): 1-8.
pmid: 16624247
[23]   Cheng J, Liu Y, Yan J X, et al. Fumarate suppresses B-cell activation and function through direct inactivation of LYN. Nature Chemical Biology, 2022, 18(9): 954-962.
doi: 10.1038/s41589-022-01052-0 pmid: 35710616
[24]   Humphries F, Shmuel-Galia L, Ketelut-Carneiro N, et al. Succination inactivates gasdermin D and blocks pyroptosis. Science, 2020, 369(6511): 1633-1637.
doi: 10.1126/science.abb9818 pmid: 32820063
[25]   Narita T, Weinert B T, Choudhary C. Functions and mechanisms of non-histone protein acetylation. Nature Reviews Molecular Cell Biology, 2019, 20(3): 156-174.
doi: 10.1038/s41580-018-0081-3 pmid: 30467427
[26]   Wagner G R, Hirschey M D. Nonenzymatic protein acylation as a carbon stress regulated by sirtuin deacylases. Molecular Cell, 2014, 54(1): 5-16.
doi: S1097-2765(14)00260-3 pmid: 24725594
[27]   James A M, Hoogewijs K, Logan A, et al. Non-enzymatic N-acetylation of lysine residues by acetyl CoA often occurs via a proximal S-acetylated thiol intermediate sensitive to glyoxalase II. Cell Reports, 2017, 18(9): 2105-2112.
doi: 10.1016/j.celrep.2017.02.018
[28]   Lin H N, Su X Y, He B. Protein lysine acylation and cysteine succination by intermediates of energy metabolism. ACS Chemical Biology, 2012, 7(6): 947-960.
doi: 10.1021/cb3001793 pmid: 22571489
[29]   Choudhary C, Weinert B T, Nishida Y, et al. The growing landscape of lysine acetylation links metabolism and cell signalling. Nature Reviews Molecular Cell Biology, 2014, 15(8): 536-550.
doi: 10.1038/nrm3841 pmid: 25053359
[30]   Weinert B T, Iesmantavicius V, Moustafa T, et al. Acetylation dynamics and stoichiometry in Saccharomyces cerevisiae. Molecular Systems Biology, 2014, 10(1): 716.
doi: 10.1002/msb.134766 pmid: 24489116
[31]   Wagner G R, Payne R M. Widespread and enzyme-independent Nε-acetylation and Nε-succinylation of proteins in the chemical conditions of the mitochondrial matrix. The Journal of Biological Chemistry, 2013, 288(40): 29036-29045.
doi: 10.1074/jbc.M113.486753
[32]   Schastnaya E, Doubleday P F, Maurer L, et al. Non-enzymatic acetylation inhibits glycolytic enzymes in Escherichia coli. Cell Reports, 2023, 42(1): 111950.
doi: 10.1016/j.celrep.2022.111950
[33]   Zhang Z H, Tan M J, Xie Z Y, et al. Identification of lysine succinylation as a new post-translational modification. Nature Chemical Biology, 2011, 7(1): 58-63.
doi: 10.1038/nchembio.495 pmid: 21151122
[34]   Peng C, Lu Z K, Xie Z Y, et al. The first identification of lysine malonylation substrates and its regulatory enzyme. Molecular & Cellular Proteomics, 2011, 10(12): M111.012658.
[35]   Tan M J, Luo H, Lee S, et al. Identification of 67 histone marks and histone lysine crotonylation as a new type of histone modification. Cell, 2011, 146(6): 1016-1028.
doi: 10.1016/j.cell.2011.08.008 pmid: 21925322
[36]   Tan M J, Peng C, Anderson K A, et al. Lysine glutarylation is a protein posttranslational modification regulated by SIRT5. Cell Metabolism, 2014, 19(4): 605-617.
doi: 10.1016/j.cmet.2014.03.014 pmid: 24703693
[37]   Gaffney D O, Jennings E Q, Anderson C C, et al. Non-enzymatic lysine lactoylation of glycolytic enzymes. Cell Chemical Biology, 2020, 27(2): 206-213, e6.
doi: S2451-9456(19)30363-0 pmid: 31767537
[38]   Park J, Chen Y, Tishkoff D X, et al. SIRT5-mediated lysine desuccinylation impacts diverse metabolic pathways. Molecular Cell, 2013, 50(6): 919-930.
doi: 10.1016/j.molcel.2013.06.001 pmid: 23806337
[39]   Wang F, Wang K, Xu W, et al. SIRT5 desuccinylates and activates pyruvate kinase M2 to block macrophage IL-1β production and to prevent DSS-induced colitis in mice. Cell Reports, 2017, 19(11): 2331-2344.
doi: S2211-1247(17)30722-2 pmid: 28614718
[40]   Azevedo C, Livermore T, Saiardi A. Protein polyphosphorylation of lysine residues by inorganic polyphosphate. Molecular Cell, 2015, 58(1): 71-82.
doi: 10.1016/j.molcel.2015.02.010 pmid: 25773596
[41]   Penkert M, Yates L M, Schümann M, et al. Unambiguous identification of serine and threonine pyrophosphorylation using neutral-loss-triggered electron-transfer/higher-energy collision dissociation. Analytical Chemistry, 2017, 89(6): 3672-3680.
doi: 10.1021/acs.analchem.6b05095 pmid: 28218834
[42]   Morgan J, Singh A, Kurz L, et al. Pyrophosphoproteomics: extensive protein pyrophosphorylation revealed in human cell lines. bioRxiv, 2022. DOI: 10.1101/2022.11.11.516170.
doi: 10.1101/2022.11.11.516170
[43]   Chanduri M, Rai A, Malla A B, et al. Inositol hexakisphosphate kinase 1 (IP6K1) activity is required for cytoplasmic dynein-driven transport. The Biochemical Journal, 2016, 473(19): 3031-3047.
doi: 10.1042/BCJ20160610
[44]   Chalkley R J. When target-decoy false discovery rate estimations are inaccurate and how to spot instances. Journal of Proteome Research, 2013, 12(2): 1062-1064.
doi: 10.1021/pr301063v pmid: 23298186
[45]   Carbonara K, Andonovski M, Coorssen J R. Proteomes are of proteoforms: embracing the complexity. Proteomes, 2021, 9(3): 38.
doi: 10.3390/proteomes9030038
[1] Ruo-hang SUN, Rui-bing CHEN. Advances in Ide.pngication of RNA-binding Proteins Based on Mass Spectrometry[J]. China Biotechnology, 2023, 43(7): 77-87.
[2] JIN Qian, SHI Meng, LIU Zhan-biao, ZHANG Yi, ZHU Si-qing, SHI Jing-jing, ZONG Xing-xing, CHEN Xue-jun, LI Li-qin. Analysis of Differentially Expressed Proteins in the Cervical Spinal Cord of Guinea Pigs Subacutely Exposed to Soman[J]. China Biotechnology, 2023, 43(2/3): 64-74.
[3] CHEN Juan, YANG Hui-lin, HUANG Yun-hong, LONG Zhong-er. Screening of the Protein Related to Antibiotics Biosynthesis in Micromonospora carbonacea JXNU-1[J]. China Biotechnology, 2016, 36(7): 55-63.
[4] LV Shan-shan, HOU Yun-hua, YAN Meng-jie, ZHONG Yao-hua. Recent Progress in Mutagenesis Strategies and High-yielding Mechanism for Enzyme Production in Industrial Fungi[J]. China Biotechnology, 2016, 36(3): 111-119.
[5] ZHANG Yuan-yuan, HU Qi-meng, WANG Liang-liang, LI Xin-hong. Resent Advances on Phosphoproteomics Researches of Mammalian Sperm Capacitation[J]. China Biotechnology, 2012, 32(04): 76-82.
[6] TIAN Xiao-mei, REN Jian-hong, FANG Cong. Proteomic Analysis of Pichia pastoris GS115 Cultured in Different Carbon Source Mediums[J]. China Biotechnology, 2012, 32(01): 21-29.
[7] GE Wei-feng, CHU Xiao-he, WANG Yong-hong, ZHANG Si-liang. Optimization of Protease Inhibitor Mixture for Protein Extraction from Cells in Proteomics Study of Streptomyces avermitilis[J]. China Biotechnology, 2010, 30(12): 66-71.
[8] JIN Liang, CHEN Shang-wu, MA Hui-qin. Advances in Grape Proteomics[J]. China Biotechnology, 2010, 30(10): 100-107.
[9] . Advances in Grape Proteomics[J]. China Biotechnology, 2010, 30(10): 0-0.
[10] . Proteomics Analysis of heteromorphic leaves of Populus euphratica Oliv[J]. China Biotechnology, 2009, 29(09): 0-0.
[11] HAN Wei-Dong-1, 2, WANG Dong-1, HAO Hai-Sheng-1, DIAO Hua-Meng-1, DU Wei-Hua-1, SHU Hua-Ban-1. Application of Proteomics in the Sperm Protein Research[J]. China Biotechnology, 2009, 29(06): 120-124.
[12] MO Cheng- Hu-Yang- Li-Yan-Ping- Ji-Hong-Fei. Establishment of Two-dimensional Electrophoresis System for Proteome of Monascus ruber[J]. China Biotechnology, 2009, 29(04): 83-87.
[13] . Quantitative and comparative proteomics analysis of gastric cancer and adjacent noncancerous tissues[J]. China Biotechnology, 2007, 27(7): 55-60.
[14] . Recent advance in research technique of plant membrane proteomics[J]. China Biotechnology, 2007, 27(5): 131-136.
[15] . Profiling Membrane Proteome of Macrophages by One-dimensional PAGE and Liquid Chromatography –Tandem Mass Spectrometry[J]. China Biotechnology, 2007, 27(4): 77-82.