Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2023, Vol. 43 Issue (9): 55-61    DOI: 10.13523/j.cb.2303033
    
Improvement of the Yield of Pseudoviruses via Mutation of Lysine Residues Targeted by MARCH
JING Hui-yuan1,**(),DUAN Er-zhen2,ZHAO Pan-deng1
1 Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China
2 College of Biological Engineering, Henan University of Technology, Zhengzhou 450001, China
Download: HTML   PDF(842KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Therapeutic antiviral drugs, neutralizing antibody and preventive vaccines have been proven to be the most effective control measures towards emerging and reemerging viruses with high pathogenicity and infectivity like SARS-CoV-2. However, the experiments involving live viruses must be carried out in biosafety level 3 (BSL-3) or BSL-4 facilities. To facilitate the evaluation of these antiviral products, the pseudovirus system has been developed based on the human immunodeficiency virus (HIV)/vesicular stomatitis virus (VSV) packaging system, as well as expression plasmids carrying envelope proteins to perform the function of attachment and fusion similar to the wild-type virus. Membrane-associated RING-CH (MARCH) E3 ubiquitin ligase proteins have been reported to downregulate the envelope proteins and significantly affect the yield and infection efficiency of pseudoviruses. This review summarizes the current progress in the effect of engineering MARCH-resistant envelop proteins by lysine modification on the production of pseudoviruses. Apparently, increased expression level from the surfaces of packaging cells and improved processing of the envelope protein in the packaging cells will greatly promote the development of antiviral drugs, antibody screening, vaccine research, and receptor recognition.



Key wordsPseudoviruses      Packaging system      Envelope protein      Lysine residue modification     
Received: 13 March 2023      Published: 08 October 2023
ZTFLH:  R373.2  
Cite this article:

JING Hui-yuan, DUAN Er-zhen, ZHAO Pan-deng. Improvement of the Yield of Pseudoviruses via Mutation of Lysine Residues Targeted by MARCH. China Biotechnology, 2023, 43(9): 55-61.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2303033     OR     https://manu60.magtech.com.cn/biotech/Y2023/V43/I9/55

Fig.1 The strategies to generate pseudoviruses
Fig.2 Functional domains and features of viral fusion proteins
Fig.3 Structure and functional domains of MARCH proteins
[1]   Wen X J, Zhang L, Liu Q, et al. Screening and identification of HTNVpv entry inhibitors with high-throughput pseudovirus-based chemiluminescence. Virologica Sinica, 2022, 37(4): 531-537.
doi: 10.1016/j.virs.2022.04.015
[2]   Zhang Y, Wei Y Q, Li Y L, et al. IgY antibodies against Ebola virus possess post-exposure protection in a murine pseudovirus challenge model and excellent thermostability. PLoS Neglected Tropical Diseases, 2021, 15(3): e0008403.
doi: 10.1371/journal.pntd.0008403
[3]   Ma J, Chen R F, Huang W J, et al. In vitro and in vivo efficacy of a Rift Valley fever virus vaccine based on pseudovirus. Human Vaccines & Immunotherapeutics, 2019, 15(10): 2286-2294.
[4]   Cheng M L, Yang Y X, Liu Z Y, et al. Pathogenicity and structural basis of zika variants with glycan loop deletions in the envelope protein. Journal of Virology, 2022, 96(23): e0087922.
doi: 10.1128/jvi.00879-22
[5]   Xiong Q, Cao L, Ma C B, et al. Close relatives of MERS-CoV in bats use ACE 2 as their functional receptors. Nature, 2022, 612(7941): 748-757.
doi: 10.1038/s41586-022-05513-3
[6]   Leach A, Ilca F T, Akbar Z, et al. A tetrameric ACE 2 protein broadly neutralizes SARS-CoV-2 spike variants of concern with elevated potency. Antiviral Research, 2021, 194(105147):1-7.
[7]   Arimori T, Ikemura N, Okamoto T, et al. Engineering ACE2 decoy receptors to combat viral escapability. Trends in Pharmacological Sciences, 2022, 43(10): 838-851.
doi: 10.1016/j.tips.2022.06.011
[8]   Cooper L, Galvan Achi J, Rong L J. Comparative analyses of small molecule and antibody inhibition on glycoprotein-mediated entry of Měnglà virus with other filoviruses. Journal of Medical Virology, 2022, 94(7): 3263-3269.
doi: 10.1002/jmv.27739 pmid: 35332563
[9]   Jeong K, Chang J, Park S M, et al. Rapid discovery and classification of inhibitors of coronavirus infection by pseudovirus screen and amplified luminescence proximity homogeneous assay. Antiviral Research, 2023, 209: 105473.
doi: 10.1016/j.antiviral.2022.105473
[10]   Tada T, Zhang Y Z, Fujita H, et al. MARCH8: the tie that binds to viruses. The FEBS Journal, 2022, 289(13): 3642-3654.
doi: 10.1111/febs.v289.13
[11]   Villalón-Letelier F, Farrukee R, Londrigan S L, et al. Isoforms of human MARCH 1 differ in ability to restrict influenza A viruses due to differences in their N terminal cytoplasmic domain. Viruses, 2022, 14(11): 2549.
doi: 10.3390/v14112549
[12]   Perry C, Rayat A C M E. Lentiviral vector bioprocessing. Viruses, 2021, 13(2): 268.
doi: 10.3390/v13020268
[13]   Cao Y L, Jian F C, Wang J, et al. Imprinted SARS-CoV-2 humoral immunity induces convergent Omicron RBD evolution. Nature, 2023, 614(7948): 521-529.
[14]   Fujioka Y, Kashiwagi S, Yoshida A, et al. A method for the generation of pseudovirus particles bearing SARS coronavirus spike protein in high yields. Cell Structure and Function, 2022, 47(1): 43-53.
doi: 10.1247/csf.21047 pmid: 35491102
[15]   Lee S Y, Kim D W, Jung Y T. Construction of SARS-CoV-2 spike-pseudotyped retroviral vector inducing syncytia formation. Virus Genes, 2022, 58(3): 172-179.
doi: 10.1007/s11262-022-01890-z pmid: 35322356
[16]   Wang Z, Zhong K H, Wang G Q, et al. Loss of furin site enhances SARS-CoV-2 spike protein pseudovirus infection. Gene, 2023, 856: 147144.
doi: 10.1016/j.gene.2022.147144
[17]   Kalkeri R, Cai Z H, Lin S L, et al. SARS-CoV-2 spike pseudoviruses: a useful tool to study virus entry and address emerging neutralization escape phenotypes. Microorganisms, 2021, 9(8): 1744.
doi: 10.3390/microorganisms9081744
[18]   Tien C F, Tsai W T, Chen C H, et al. Glycosylation and S-palmitoylation regulate SARS-CoV-2 spike protein intracellular trafficking. iScience, 2022, 25(8): 104709.
doi: 10.1016/j.isci.2022.104709
[19]   Ai J W, Wang X, He X Y, et al. Antibody evasion of SARS-CoV-2 Omicron BA.1, BA.1.1, BA.2, and BA.3 sub-lineages. Cell Host & Microbe, 2022, 30(8): 1077-1083.e4.
[20]   Wang X, Zhao X Y, Song J Y, et al. Homologous or heterologous booster of inactivated vaccine reduces SARS-CoV-2 Omicron variant escape from neutralizing antibodies. Emerging Microbes & Infections, 2022, 11(1): 477-481.
[21]   Markosyan R M, Marin M, Zhang Y, et al. The late endosome-resident lipid bis(monoacylglycero)phosphate is a cofactor for Lassa virus fusion. PLoS Pathogens, 2021, 17(9): e1009488.
doi: 10.1371/journal.ppat.1009488
[22]   Pennington H N, Lee J. Lassa virus glycoprotein complex review: insights into its unique fusion machinery. Bioscience Reports, 2022, 42(2): 1-21.
[23]   Chen Y L, Wang F, Yin L W, et al. Structural basis for a human broadly neutralizing influenza A hemagglutinin stem-specific antibody including H17/18 subtypes. Nature Communications, 2022, 13(1): 1-13.
doi: 10.1038/s41467-021-27699-2
[24]   Luo M X, Zhou B, Reddem E R, et al. Structural insights into broadly neutralizing antibodies elicited by hybrid immunity against SARS-CoV-2. Emerging Microbes & Infections, 2023, 12(1): 2146538.
[25]   Alfadhli A, Romanaggi C, Barklis R L, et al. Analysis of HIV-1 envelope cytoplasmic tail effects on viral replication. Virology, 2023, 579: 54-66.
doi: 10.1016/j.virol.2022.12.017 pmid: 36603533
[26]   Zhang X J, Wang C, Chen B H, et al. Crystal structure of refolding fusion core of lassa virus GP2 and design of lassa virus fusion inhibitors. Frontiers in Microbiology, 2019, 10: 1829.
doi: 10.3389/fmicb.2019.01829 pmid: 31456769
[27]   Wang L L, Estrada L, Wiggins J, et al. Ligand-based design of peptide entry inhibitors targeting the endosomal receptor binding site of filoviruses. Antiviral Research, 2022, 206: 105399.
doi: 10.1016/j.antiviral.2022.105399
[28]   Luo J, Qin H, Lei L, et al. Virus-like particles containing a prefusion-stabilized F protein induce a balanced immune response and confer protection against respiratory syncytial virus infection in mice. Frontiers in Immunology, 2022, 13: 1054005.
doi: 10.3389/fimmu.2022.1054005
[29]   Wang M, Sun Z Z, Cui C X, et al. Structural insights into alphavirus assembly revealed by the cryo-EM structure of getah virus. Viruses, 2022, 14(2): 327.
doi: 10.3390/v14020327
[30]   Zhou K, Si Z, Ge P, et al. Atomic model of vesicular stomatitis virus and mechanism of assembly. Nature Communications, 2022, 13(1): 1-13.
doi: 10.1038/s41467-021-27699-2
[31]   Zhang X, Hong J P, Zhong L, et al. Protective anti-gB neutralizing antibodies targeting two vulnerable sites for EBV-cell membrane fusion. Proceedings of the National Academy of Sciences of the United States of America, 2022, 119(32): e2202371119.
[32]   Johnson M C, Lyddon T D, Suarez R, et al. Optimized pseudotyping conditions for the SARS-CoV-2 spike glycoprotein. Journal of Virology, 2020, 94(21): e01062-e01020.
[33]   Zhang Y Z, Ozono S, Tada T, et al. MARCH8 targets cytoplasmic lysine residues of various viral envelope glycoproteins. Microbiology Spectrum, 2022, 10(1): e0061821.
doi: 10.1128/spectrum.00618-21
[34]   Chen H Y, Huang C, Tian L, et al. Cytoplasmic tail truncation of SARS-CoV-2 spike protein enhances titer of pseudotyped vectors but masks the effect of the D614G mutation. Journal of Virology, 2021, 95(22): e0096621.
doi: 10.1128/JVI.00966-21
[35]   Mekkaoui L, Bentley E, Ferrari M, et al. Optimised method for the production and titration of lentiviral vectors pseudotyped with the SARS-CoV-2 spike. Bio-Protocol, 2021, 11(16): e4194.
doi: 10.21769/BioProtoc.4194 pmid: 34541054
[36]   Havranek K, Jimenez A, Acciani M, et al. SARS-CoV-2 spike alterations enhance pseudoparticle titers and replication-competent VSV-SARS-CoV-2 virus. Viruses, 2020, 12(12): 1465.
doi: 10.3390/v12121465
[37]   Villalón-Letelier F, Brooks A G, Londrigan S L, et al. MARCH8 restricts influenza A virus infectivity but does not downregulate viral glycoprotein expression at the surface of infected cells. mBio, 2021, 12(5): e0148421.
doi: 10.1128/mBio.01484-21
[38]   Zhang Y Z, Tada T, Ozono S, et al. MARCH8 inhibits viral infection by two different mechanisms. eLife, 2020, 9: 57763.
[39]   Li C, Shi L, Gao Y, et al. HSC70 inhibits spring viremia of carp virus replication by inducing MARCH8-mediated lysosomal degradation of G protein. Frontiers in Immunology, 2021, 12: 724403.
doi: 10.3389/fimmu.2021.724403
[40]   Xu F W, Liu X M, Zhang D, et al. The engineered MARCH8-resistant vesicular stomatitis virus glycoprotein enhances lentiviral vector transduction. Human Gene Therapy, 2021, 32(17-18): 936-948.
doi: 10.1089/hum.2020.292
[41]   Umthong S, Lynch B, Timilsina U, et al. Elucidating the antiviral mechanism of different MARCH factors. mBio, 2021, 12(2): e03264-e03220.
[42]   Yu C Q, Li S N, Zhang X F, et al. MARCH8 inhibits Ebola virus glycoprotein, human immunodeficiency virus type 1 envelope glycoprotein, and avian influenza virus H5N1 hemagglutinin maturation. mBio, 2020, 11(5): 1-15.
[43]   Lun cheng man, Waheed A A, Majadly A, et al. Mechanism of viral glycoprotein targeting by membrane-associated RING-CH proteins. mBio, 2021, 12(2): 1-26.
[44]   Liu X M, Xu F W, Ren L L, et al. MARCH8 inhibits influenza A virus infection by targeting viral M2 protein for ubiquitination-dependent degradation in lysosomes. Nature Communications, 2021, 12(1): 1-13.
doi: 10.1038/s41467-020-20314-w
[45]   Zhang Y Z, Tada T, Ozono S, et al. Membrane-associated RING-CH (MARCH) 1 and 2 are MARCH family members that inhibit HIV-1 infection. The Journal of Biological Chemistry, 2019, 294(10): 3397-3405.
doi: 10.1074/jbc.AC118.005907
[46]   Tsai T I, Khalili J S, Gilchrist M, et al. ACE2-Fc fusion protein overcomes viral escape by potently neutralizing SARS-CoV-2 variants of concern. Antiviral Research, 2022, 199: 105271.
doi: 10.1016/j.antiviral.2022.105271
[1] ZHONG Yan-ping, LIN Ruo-yun, LI Dan-rong, HU Xiao-xia, WANG Qi, LI Li. Construction of Recombinant Telomerase Reverse Transcriptase Gene Lentiviral Expression Vector and Virus Packaging[J]. China Biotechnology, 2011, 31(9): 21-27.
[2] LI Jiang-jiao, ZHU Wu-yang, HE Ying, LIANG Guo-dong. Optimizing the Soluble Expression Conditions of Sindbis Virus E2 Envelope Protein[J]. China Biotechnology, 2011, 31(02): 62-68.