Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2023, Vol. 43 Issue (7): 122-135    DOI: 10.13523/j.cb.2212039
    
Research Progress in Improving the Yield of Butenyl-spinosyn Based on Metabolic Pathway Optimization
Yu XIE1,2,Bo SUN2,Jia SONG2,Chen ZHAO2,**(),Wan-zhong ZHANG1,**()
1 College of Pharmaceutical and Biological Engineering, Shenyang University of Chemical Technology, Shenyang 110142, China
2 Academy of National Food and Strategic Reserves Administration, Beijing 100037, China
Download: HTML   PDF(1985KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Butenyl-spinosyn, a macrolide antibiotic produced by Saccharopolyspora pogona, is a green, environmentally-friendly novel bio-pesticide with high application value in pest control and grain storage. However, the low yield of the wild-type strain has limited the application of this compound; therefore, high-yield strain breeding becomes a question that needs to be solved urgently. In this paper, new ideas of genetic breeding for increasing butenyl-spinosyn in recent years were summarized. The studies on increasing butenyl-spinosyn yield were reviewed, based on the modification of carbon, nitrogen and phosphate metabolic pathways as well as transcriptional regulation of S.pogona, and the prospect of strain breeding through heterologous expression was also discussed, in order to provide effective reference for the construction and optimization of butenyl-spinosyn high yielding strains.



Key wordsButenyl-spinosyn      Saccharopolyspora pogona      Biological pesticide      High-yield strain      Metabolic pathway optimization     
Received: 27 December 2022      Published: 03 August 2023
ZTFLH:  Q939.9  
Cite this article:

Yu XIE, Bo SUN, Jia SONG, Chen ZHAO, Wan-zhong ZHANG. Research Progress in Improving the Yield of Butenyl-spinosyn Based on Metabolic Pathway Optimization. China Biotechnology, 2023, 43(7): 122-135.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2212039     OR     https://manu60.magtech.com.cn/biotech/Y2023/V43/I7/122

Fig.1 Structural formula of spinosyn and butenyl-spinosyn (a) Spinosyn (b) Butenyl-spinosyn
害虫名称 分类 丁烯基多杀菌素 多杀菌素
马铃薯甲虫(Leptinotarsa decemlineata) 鞘翅目 + -
苹果蠹蛾(Laspeyresia pomonella) 半翅目 + -
梨小食心虫(Grapholitha molesta) 半翅目 + -
烟青虫(Heliothis assulta) 鳞翅目 + -
苹果小卷叶娥(Cydia pomonella) 鳞翅目 + -
亚热带黏虫(Spodoptera eridania) 鳞翅目 + +
甜菜夜蛾(Spodoptera exigua) 鳞翅目 + +
棉铃虫(Helicoverpa armigera) 鳞翅目 + +
家蝇(Musca domestica) 鳞翅目 + +
粉纹夜蛾(Trichoplusia ni) 鳞翅目 + +
Table 1 Insecticidal spectrum of butenyl-spinosyn
Fig.2 Comparison of butenyl-spinosyn and spinosyn biosynthetic gene clusters
Fig.3 Module structure of spinosyn and butenyl-spinosyn polyketide synthase
Fig.4 The biosynthetic pathway of butenyl-spinosyn
Fig.5 Metabolic network of butenyl-spinosyn
名称 方法 优化前产量 优化后产量 产量提升 参考文献
多杀菌素 敲除磷酸烯醇式丙酮酸磷酸转移酶基因 107.85 mg/L 221.63 mg/L 2.05倍 [27]
磷酸盐组合调节脂肪酸代谢 315.15 mg/L 520.00 mg/L 1.65倍 [28]
过表达脱乙酰化酶基因acuC 70.40 mg/L 125.65 mg/L 1.78倍 [29]
过表达环腺苷酸受体蛋白基因crp - - 1.28倍 [30]
敲除磷酸甘露糖酶编码基因manB - - 1.80倍 [31]
丁烯基多杀菌素 敲除编码GDP-岩藻糖合成酶的fcl基因 606.20 mAU·min
(峰面积)
786.00 mAU·min
(峰面积)
1.30倍 [33]
聚酮合酶基因与琥珀酸半醛脱氢酶基因联合作用 (24.15±1.72)mg/L (154.1±10.98)mg/L 6.38倍 [35]
过表达与铁储存有关的基因bfr (22.65±0.95)mg/L (71.22±7.89)mg/L 3.14倍 [36]
敲除padR基因 132.3 mAU·min
(峰面积)
168.4 mAU·min
(峰面积)
1.27倍 [37]
构建类黄酮基因簇完全缺失突变株 21.20 mg/L 107.30 mg/L 4.06倍 [39]
敲除NRPS-T1PKS基因簇 (512.47±78.15)mAU·s
(峰面积)
(2 417.66±225.87)mAU·s
(峰面积)
4.72倍 [40]
Table 2 Effects of the optimization of carbon metabolism pathway on the production of spinosad and butenyl-spinosyn
方法 优化前产量 优化后产量 产量提升 参考文献
过表达afsR基因 250.90 mAU·min(峰面积) 293.60 mAU·min(峰面积) 1.17倍 [68]
过表达sp13016基因 (25.43±2.02)mg/L (72.74±7.90)mg/L 2.84倍 [69]
过表达sp1418基因 424.30 mAU·s(峰面积) 1 382.90 mAU·s(峰面积) 3.25倍 [70]
敲除sp1288基因 (764.73 ± 52.26)mAU·s(峰面积) (2 370.66 ± 78.28)mAU·s(峰面积) 3.10倍 [71]
过表达sp2854基因 (22.48±4.53)mg/L (65.12±8.57)mg/L 2.89倍 [72]
Table 3 Increase the production of butenyl-spinosyn through transcriptional regulation
类别 方法 结果 参考文献
多杀菌素异源表达 利用RED/ET技术将多杀菌素生物合成基因簇转入天蓝色链霉菌和变铅青链霉菌中 成功表达,产量较低 [78]
将多杀菌素生物合成基因簇在白色链霉菌中表达 1.12 mg/L [79]
刺糖多孢菌与红色糖多孢菌进行原生质体融合 453.40 mg/L [81]
将多杀菌素生物合成基因簇在红色糖多孢菌中表达并优化 830.00 mg/L [82]
在天蓝色链霉菌中将多杀菌素生物合成基因簇增至5个拷贝 1.25 mg/L [83]
其他天然产物异源表达 将泰乐菌素生物合成基因簇在白色链霉菌中表达 14.60 mg/L [84]
将阿维链霉菌生物合成基因簇整合到天蓝色链霉菌中 成功表达阿维菌素各组分 [85]
Table 4 Heterologous host optimization
[1]   唐黎标. 储粮害虫防治现状与问题研讨. 粮食问题研究, 2018(4): 43-45.
[1]   Tang L B. Discussion on the present situation and problems of stored grain pest control. Grain Issues Research, 2018(4): 43-45.
[2]   邓树华, 苏振华, 王达能, 等. 我国储粮杀虫剂安全使用现状调研. 粮食科技与经济, 2020, 45(3): 67-69.
[2]   Deng S H, Su Z H, Wang D N, et al. Investigation on the current situation of safe use of stored grain pesticides in China. Grain Science and Technology and Economy, 2020, 45(3): 67-69.
[3]   王晓庭. 生物农药发展现状及趋势分析. 山西林业科技, 2021, 50(4): 61-62.
[3]   Wang X T. Analysis on the development status and trend of biological pesticides. Shanxi Forestry Science and Technology, 2021, 50(4): 61-62.
[4]   王争艳, 王文芳, 苗世远, 等. 储粮防护剂的应用现状及展望. 应用昆虫学报, 2021, 58(3): 497-507.
[4]   Wang Z Y, Wang W F, Miao S Y, et al. The use of grain protectants in pest control. Chinese Journal of Applied Entomology, 2021, 58(3): 497-507.
[5]   张逍遥, 郭超, 刘艳丽, 等. 生物农药多杀菌素及其结构类似物的研究进展. 粮油食品科技, 2020, 28(6): 209-217.
[5]   Zhang X Y, Guo C, Liu Y L, et al. Research progress on the biopesticide spinosyns and their analogues. Science and Technology of Cereals, Oils and Foods, 2020, 28(6): 209-217.
[6]   陈爽, 赵晨, 黎琪, 等. 丁烯基多杀菌素高产菌株的诱变选育及培养基优化. 江苏农业科学, 2018, 46(9): 108-111.
[6]   Chen S, Zhao C, Li Q, et al. Mutation breeding and medium optimization of butenyl spinosyns producing strain. Jiangsu Agricultural Sciences, 2018, 46(9): 108-111.
[7]   李文杰, 谢丽萍. 刺糖多孢菌菌种选育和遗传改造研究进展. 中国医药工业杂志, 2022, 53(3): 306-314.
[7]   Li W J, Xie L P. Research progress in breeding and genetic manipulation of Saccharopolyspora spinosa. Chinese Journal of Pharmaceuticals, 2022, 53(3): 306-314.
[8]   邬洋. 放线菌Saccharopolyspora pogona菌株的核糖体工程改造与活性产物研究. 长沙: 湖南师范大学, 2014.
[8]   Wu Y. Improvement of Saccharopolyspora pogona strain by ribosome engineering and analysis of the metabolites. Changsha: Hunan Normal University, 2014.
[9]   兰周. 多杀菌素生物合成基因簇的克隆及异源表达载体的构建. 福州: 福建农林大学, 2012.
[9]   Lan Z. Cloning and construction of heterologous expression vector of spinosad biosynthesis gene cluster. Fuzhou: Fujian Agriculture and Forestry University, 2012.
[10]   黄颖. 多杀菌素生物合成基因簇的异源表达及刺糖多孢菌遗传转化. 福州: 福建农林大学, 2014.
[10]   Huang Y. Heterologous expression of spinosad biosynthesis gene cluster and efficient genetic transformation of Saccharopolyspora spinosa. Fuzhou: Fujian Agriculture and Forestry University, 2014.
[11]   Huang K X, Xia L Q, Zhang Y M, et al. Recent advances in the biochemistry of spinosyns. Applied Microbiology and Biotechnology, 2009, 82(1): 13-23.
doi: 10.1007/s00253-008-1784-8
[12]   郭超, 赵晨, 黎琪, 等. 产丁烯基多杀菌素菌株的筛选及鉴定. 粮油食品科技, 2019, 27(2): 55-60.
[12]   Guo C, Zhao C, Li Q, et al. Screening and ide.pngication of the strain producing butenyl-spinosyns. Science and Technology of Cereals, Oils and Foods, 2019, 27(2): 55-60.
[13]   Salgado V L. The mode of action of spinosad and other insect control products. Down Earth, 1997, 52: 35-44.
[14]   Raymond-Delpech V, Matsuda K, Sattelle B M, et al. Ion channels: molecular targets of neuroactive insecticides. Invertebrate Neuroscience, 2005, 5(3-4): 119-133.
pmid: 16172884
[15]   Kirst H A. The spinosyn family of insecticides: realizing the potential of natural products research. The Journal of Antibiotics, 2010, 63(3): 101-111.
doi: 10.1038/ja.2010.5
[16]   刘佳, 王毅, 郭线茹, 等. 棉铃虫与烟青虫雌性信息素合成进展. 农药, 2016, 55(10): 703-706, 780.
[16]   Liu J, Wang Y, Guo X R, et al. Research advances on synthesis of sex pheromone of bollworm and tobacco budworm. Agrochemicals, 2016, 55(10): 703-706, 780.
[17]   殷怀生, 张文军. 苹果蠹蛾绿色防治药剂筛选试验. 中国园艺文摘, 2017, 33(2): 64-65.
[17]   Yin H S, Zhang W J. Screening of green insecticides for control of Coddle moth. Chinese Horticulture Abstracts, 2017, 33(2): 64-65.
[18]   Millar N S, Denholm I. Nicotinic acetylcholine receptors: targets for commercially important insecticides. Invertebrate Neuroscience, 2007, 7(1): 53-66.
pmid: 17216290
[19]   Mertz F P, Yao R C. Saccharopolyspora spinosa sp. nov.isolated from soil collected in a sugar mill rum still. International Journal of Systematic Bacteriology, 1990, 40(1): 34-39.
doi: 10.1099/00207713-40-1-34
[20]   Waldron C, Madduri K, Crawford K, et al. A cluster of genes for the biosynthesis of spinosyns, novel macrolide insect control agents produced by Saccharopolyspora spinosa. Antonie Van Leeuwenhoek, 2000, 78(3-4): 385-390.
doi: 10.1023/A:1010289901631
[21]   寿佳丽, 裘娟萍. 新型生物农药-丁烯基多杀菌素. 农药, 2011, 50(4): 239-243, 272.
[21]   Shou J L, Qiu J P. A new type of biological pesticide: butenyl-spinosyns. Agrochemicals, 2011, 50(4): 239-243, 272.
[22]   Hahn D R, Gustafson G, Waldron C, et al. Butenyl-spinosyns, a natural example of genetic engineering of antibiotic biosynthetic genes. Journal of Industrial Microbiology and Biotechnology, 2006, 33(2): 94-104.
doi: 10.1007/s10295-005-0016-9
[23]   何昊城. 丁烯基多杀菌素合成关键调控基因及代谢网络优化研究. 长沙: 湖南师范大学, 2021.
[23]   He H C. Optimization of key regulatory genes and metabolic networks of butenyl-spinosyn biosynthesis. Changsha: Hunan Normal University, 2021.
[24]   唐建立. 须糖多孢菌丁烯基多杀菌素生物合成调控的几个关键基因的功能研究. 长沙: 湖南师范大学, 2021.
[24]   Tang J L. Functional analysis of several key genes regulating biosynthesis of butenyl-spinosyns Saccharopolyspora pogona. Changsha: Hunan Normal University, 2021.
[25]   郭姝媛, 吴良焕, 刘香健, 等. 微生物中一碳代谢网络构建的进展与挑战. 合成生物学, 2022, 3(1): 116-137.
doi: 10.12211/2096-8280.2021-079
[25]   Guo S Y, Wu L H, Liu X J, et al. Developing C1-based metabolic network in methylotrophy for biotransformation. Synthetic Biology Journal, 2022, 3(1): 116-137.
doi: 10.12211/2096-8280.2021-079
[26]   Van der Heul H U, Bilyk B L, McDowall K J, et al. Regulation of antibiotic production in Actinobacteria: new perspectives from the post-genomic era. Natural Product Reports, 2018, 35(6): 575-604.
doi: 10.1039/C8NP00012C
[27]   Liu Z D, Zhu Z R, Tang J L, et al. RNA-seq-based transcriptomic analysis of Saccharopolyspora spinosa revealed the critical function of PEP phosphonomutase in the replenishment pathway. Journal of Agricultural and Food Chemistry, 2020, 68(49): 14660-14669.
doi: 10.1021/acs.jafc.0c04443
[28]   Wan M Y, Peng C, Ding W X, et al. Calcium-phosphate combination enhances spinosad production in Saccharopolyspora spinosa via regulation of fatty acid metabolism. Applied Biochemistry and Biotechnology, 2022, 194(6): 2528-2541.
doi: 10.1007/s12010-022-03799-7
[29]   Liu Z D, Xiao J, Tang J L, et al. Effects of acuC on the growth development and spinosad biosynthesis of Saccharopolyspora spinosa. Microbial Cell Factories, 2021, 20(1): 141.
doi: 10.1186/s12934-021-01630-2
[30]   徐妙, 邬洋, 杨燕, 等. 环腺苷酸受体蛋白基因的过表达对刺糖多孢菌生长和多杀菌素合成的影响. 中国农业科学, 2014, 47(18): 3577-3587.
doi: 10.3864/j.issn.0578-1752.2014.18.006
[30]   Xu M, Wu Y, Yang Y, et al. Impact on strain growth and spinosad biosynthesis by overexpression of cyclic AMP receptor protein gene in Saccharopolyspora spinosa. Scientia Agricultura Sinica, 2014, 47(18): 3577-3587.
doi: 10.3864/j.issn.0578-1752.2014.18.006
[31]   刘红雪, 蔡妹, 张由恒, 等. 磷酸甘露酶基因的阻断对刺糖多孢菌的形态及其多杀菌素合成的影响. 中国生物防治学报, 2017, 33(1): 134-141.
doi: 10.16409/j.cnki.2095-039x.2017.01.019
[31]   Liu H X, Cai M, Zhang Y H, et al. Impact on strain phenotypes and spinosad biosynthesis by disruption of phosphomannomutase gene in Saccharopolyspora spinosa. Chinese Journal of Biological Control, 2017, 33(1): 134-141.
doi: 10.16409/j.cnki.2095-039x.2017.01.019
[32]   Rang J, He H C, Yuan S Q, et al. Deciphering the metabolic pathway difference between Saccharopolyspora pogona and Saccharopolyspora spinosa by comparative proteomics and metabonomics. Frontiers in Microbiology, 2020, 11: 396.
doi: 10.3389/fmicb.2020.00396 pmid: 32256469
[33]   彭胜男, 何昊城, 苑爽芹, 等. fcl基因对须糖多孢菌丁烯基多杀菌素生物合成及生长发育的影响. 生物工程学报, 2019, 35(9): 1662-1675.
[33]   Peng S N, He H C, Yuan S Q, et al. Effect of fcl gene for butenyl-spinosyn biosynthesis and growth of Saccharopolyspora pogona. Chinese Journal of Biotechnology, 2019, 35(9): 1662-1675.
[34]   薛程斌, 赵春田, 裘娟萍. 提高多杀菌素合成前体: 乙酰辅酶A流量的代谢调控策略. 科技通报, 2018, 34(7): 9-15.
[34]   Xue C B, Zhao C T, Qiu J P. Metabolic control strategy of increasing spinosad biosynthesis precursor-acetyl coa flow. Bulletin of Science and Technology, 2018, 34(7): 9-15.
[35]   Rang J, Cao L, Shuai L, et al. Promoting butenyl-spinosyn production based on omics research and metabolic network construction in Saccharopolyspora pogona. Journal of Agricultural and Food Chemistry, 2022, 70(11): 3557-3567.
doi: 10.1021/acs.jafc.2c00285 pmid: 35245059
[36]   Tang J L, Zhu Z R, He H C, et al. Bacterioferritin: a key iron storage modulator that affects strain growth and butenyl-spinosyn biosynthesis in Saccharopolyspora pogona. Microbial Cell Factories, 2021, 20(1): 157.
doi: 10.1186/s12934-021-01651-x
[37]   何思颖, 柏丹, 夏伦, 等. PadR对须糖多孢菌丁烯基多杀菌素生物合成及转运相关蛋白表达的影响. 湖南师范大学自然科学学报, 2019, 42(5): 44-51.
[37]   He S Y, Bai D, Xia L, et al. The impact of PadR on butenyl-spinosyn biosynthesis and transporters expression in Saccharopolyspora pogona. Journal of Natural Science of Hunan Normal University, 2019, 42(5): 44-51.
[38]   何思颖, 柏丹, 夏伦, 等. 不同碳源对须糖多孢菌生长发育及丁烯基多杀菌素生物合成的影响. 激光生物学报, 2019, 28(2): 136-143.
[38]   He S Y, Bai D, Xia L, et al. Effects of different carbon sources on the growth development and butenyl-spinosyn biosynthesis of Saccharopolyspora pogona. Acta Laser Biology Sinica, 2019, 28(2): 136-143.
[39]   He H C, Tang J L, Chen J M, et al. Flaviolin-like gene cluster deletion optimized the butenyl-spinosyn biosynthesis route in Saccharopolyspora pogona. ACS Synthetic Biology, 2021, 10(10): 2740-2752.
doi: 10.1021/acssynbio.1c00344
[40]   Rang J, Li Y L, Cao L, et al. Deletion of a hybrid NRPS-T1PKS biosynthetic gene cluster via Latour gene knockout system in Saccharopolyspora pogona and its effect on butenyl-spinosyn biosynthesis and growth development. Microbial Biotechnology, 2021, 14(6): 2369-2384.
doi: 10.1111/1751-7915.13694 pmid: 33128503
[41]   陈彪, 邹龙, 黄运红, 等. 微生物氮代谢调控研究进展. 江西师范大学学报(自然科学版), 2021, 45(5): 493-502.
[41]   Chen B, Zou L, Huang Y H, et al. The research progress on the regulation of microbial nitrogen metabolism. Journal of Jiangxi Normal University (Natural Sciences Edition), 2021, 45(5): 493-502.
[42]   Nair A, Sarma S J. The impact of carbon and nitrogen catabolite repression in microorganisms. Microbiological Research, 2021, 251: 126831.
doi: 10.1016/j.micres.2021.126831
[43]   杨燕, 罗林根, 徐妙, 等. 亮氨酰氨肽酶基因的阻断对刺糖多孢菌生长及次级代谢产物合成的影响. 微生物学报, 2016, 56(4): 629-642.
pmid: 29717853
[43]   Yang Y, Luo L G, Xu M, et al. Disruption of leucyl aminopeptidase gene affects phenotypes and second metabolite production of Saccharopolyspora spinosa. Acta Microbiologica Sinica, 2016, 56(4): 629-642.
pmid: 29717853
[44]   肖洁, 刘朱东, 彭胜男, 等. GlnA基因对刺糖多孢菌生长发育及多杀菌素合成的影响. 中国生物防治学报, 2018, 34(4): 625-638.
doi: 10.16409/j.cnki.2095-039x.2018.04.018
[44]   Xiao J, Liu Z D, Peng S N, et al. The effect of glnA gene on growth development and spinosad biosynthesis in Saccharopolyspora spinosa. Chinese Journal of Biological Control, 2018, 34(4): 625-638.
doi: 10.16409/j.cnki.2095-039x.2018.04.018
[45]   Hu J J, Xia Z Y, Shuai L, et al. Effect of pII key nitrogen regulatory gene on strain growth and butenyl-spinosyn biosynthesis in Saccharopolyspora pogona. Applied Microbiology and Biotechnology, 2022, 106(8): 3081-3091.
doi: 10.1007/s00253-022-11902-5
[46]   Li L, Rang J, He H C, et al. Impact on strain growth and butenyl-spinosyn biosynthesis by overexpression of polynucleotide phosphorylase gene in Saccharopolyspora pogona. Applied Microbiology and Biotechnology, 2018, 102(18): 8011-8021.
doi: 10.1007/s00253-018-9178-z pmid: 29984395
[47]   Selim M S M, Abdelhamid S A, Mohamed S S. Secondary metabolites and biodiversity of actinomycetes. Journal of Genetic Engineering and Biotechnology, 2021, 19(1): 72.
doi: 10.1186/s43141-021-00156-9
[48]   尹守亮, 张玉秀, 张琪, 等. 无机磷酸盐对链霉菌合成次级代谢产物的影响. 中国生物工程杂志, 2015, 35(9): 105-113.
[48]   Yin S L, Zhang Y X, Zhang Q, et al. The effect of inorganic phosphate on the biosynthesis of secondary metabolites in Streptomyces. China Biotechnology, 2015, 35(9): 105-113.
[49]   王琳淇, 谭华荣. 微生物次生代谢的分子调控. 微生物学报, 2009, 49(4): 411-416.
[49]   Wang L Q, Tan H R. Molecular regulation of microbial secondary metabolites. Acta Microbiologica Sinica, 2009, 49(4): 411-416.
[50]   Niu G Q, Tan H R. Biosynthesis and regulation of secondary metabolites in microorganisms. Science China: Life Sciences, 2013, 56(7): 581-583.
doi: 10.1007/s11427-013-4501-5
[51]   Liras P, Asturias J A, Martin J F. Phosphate control sequences involved in transcriptional regulation of antibiotic biosynthesis. Trends in Biotechnology, 1990, 8(7): 184-189.
pmid: 1366623
[52]   Ghorbel S, Kormanec J, Artus A, et al. Transcriptional studies and regulatory interactions between the phoR- phoP operon and the phoU, mtpA, and ppk genes of Streptomyces lividans TK24. Journal of Bacteriology, 2006, 188(2): 677-686.
doi: 10.1128/JB.188.2.677-686.2006
[53]   Tenconi E, Jourdan S, Motte P, et al. Extracellular sugar phosphates are assimilated by Streptomyces in a PhoP-dependent manner. Antonie Van Leeuwenhoek, 2012, 102(3): 425-433.
doi: 10.1007/s10482-012-9763-6
[54]   Rodríguez-García A, Barreiro C, Santos-Beneit F, et al. Genome-wide transcriptomic and proteomic analysis of the primary response to phosphate limitation in Streptomyces coelicolor M145 and in a ΔphoP mutant. Proteomics, 2007, 7(14): 2410-2429.
pmid: 17623301
[55]   Aggarwal S, Somani V K, Gupta V, et al. Functional characterization of PhoPR two component system and its implication in regulating phosphate homeostasis in Bacillus anthracis. Biochimica et Biophysica Acta, 2017, 1861(1 Pt A): 2956-2970.
[56]   Santos-Beneit F. The Pho regulon: a huge regulatory network in bacteria. Frontiers in Microbiology, 2015, 6: 402.
doi: 10.3389/fmicb.2015.00402 pmid: 25983732
[57]   Martín J F. Phosphate control of the biosynthesis of antibiotics and other secondary metabolites is mediated by the PhoR-PhoP system: an unfinished story. Journal of Bacteriology, 2004, 186(16): 5197-5201.
doi: 10.1128/JB.186.16.5197-5201.2004 pmid: 15292120
[58]   刘丹. 白黄链霉菌TD-1产帕马霉素条件优化及低磷胁迫调控研究. 天津: 天津科技大学, 2021.
[58]   Liu D. Optimization of fermentation conditions for production of pamamycin and the metabolism regulation to phosphate limitation in Streptomyces alboflavus TD-1. Tianjin: Tianjin University of Science & Technology, 2021.
[59]   Shang Y P, Wang X F, Chen Z, et al. Staphylococcus aureus PhoU homologs regulate persister formation and virulence. Frontiers in Microbiology, 2020, 11: 865.
doi: 10.3389/fmicb.2020.00865
[60]   Tang J L, Chen J M, Liu Y, et al. The global regulator PhoU positively controls growth and butenyl-spinosyn biosynthesis in Saccharopolyspora pogona. Frontiers in Microbiology, 2022, 13: 904627.
doi: 10.3389/fmicb.2022.904627
[61]   Rang J, He H C, Chen J M, et al. SenX3-RegX3, an important two-component system, regulates strain growth and butenyl-spinosyn biosynthesis in Saccharopolyspora pogona. iScience, 2020, 23(8): 101398.
doi: 10.1016/j.isci.2020.101398
[62]   Mendes M V, Tunca S, Antón N, et al. The two-component phoR-phoP system of Streptomyces natalensis: inactivation or deletion of phoP reduces the negative phosphate regulation of pimaricin biosynthesis. Metabolic Engineering, 2007, 9(2): 217-227.
pmid: 17142079
[63]   徐洪超, 商靖, 刘铭荟, 等. 氮代谢相关酶的研究进展. 安徽农业科学, 2022, 50(4): 17-20.
[63]   Xu H C, Shang J, Liu M H, et al. Research progress of enzymes related to nitrogen metabolism. Journal of Anhui Agricultural Sciences, 2022, 50(4): 17-20.
[64].   pngfert Y, Supra P, Wurm R, et al. The Streptomyces coelicolor GlnR regulon: ide.pngication of new GlnR targets and evidence for a central role of GlnR in nitrogen metabolism in actinomycetes. Molecular Microbiology, 2008, 67(4): 861-880.
doi: 10.1111/mmi.2008.67.issue-4
[65]   Qu S, Kang Q J, Wu H, et al. Positive and negative regulation of GlnR in validamycin A biosynthesis by binding to different loci in promoter region. Applied Microbiology and Biotechnology, 2015, 99(11): 4771-4783.
doi: 10.1007/s00253-015-6437-0 pmid: 25672849
[66]   He J M, Zhu H, Zheng G S, et al. Direct involvement of the master nitrogen metabolism regulator GlnR in antibiotic biosynthesis in Streptomyces. Journal of Biological Chemistry, 2016, 291(51): 26443-26454.
doi: 10.1074/jbc.M116.762476
[67]   Pei J F, Li Y X, Tang H, et al. PhoP- and GlnR-mediated regulation of metK transcription and its impact upon S-adenosyl-methionine biosynthesis in Saccharopolyspora erythraea. Microbial Cell Factories, 2022, 21(1): 120.
doi: 10.1186/s12934-022-01846-w
[68]   Li L, Gong L, He H C, et al. AfsR is an important regulatory factor for growth and butenyl-spinosyn biosynthesis of Saccharopolyspora pogona. Annals of Microbiology, 2019, 69(8): 809-818.
doi: 10.1007/s13213-019-01473-8
[69]   Tang J L, He H C, Li Y L, et al. Comparative proteomics reveals the effect of the transcriptional regulator Sp 13016 on butenyl-spinosyn biosynthesis in Saccharopolyspora pogona. Journal of Agricultural and Food Chemistry, 2021, 69(42): 12554-12565.
doi: 10.1021/acs.jafc.1c03654
[70]   He H C, Yuan S Q, Hu J J, et al. Effect of the TetR family transcriptional regulator Sp 1418 on the global metabolic network of Saccharopolyspora pogona. Microbial Cell Factories, 2020, 19(1): 27.
doi: 10.1186/s12934-020-01299-z
[71]   Rang J, Zhu Z R, Li Y L, et al. Ide.pngication of a TetR family regulator and a polyketide synthase gene cluster involved in growth development and butenyl-spinosyn biosynthesis of Saccharopolyspora pogona. Applied Microbiology and Biotechnology, 2021, 105(4): 1519-1533.
doi: 10.1007/s00253-021-11105-4 pmid: 33484320
[72]   Rang J, Xia Z Y, Shuai L, et al. A TetR family transcriptional regulator, SP_ 2854 can affect the butenyl-spinosyn biosynthesis by regulating glucose metabolism in Saccharopolyspora pogona. Microbial Cell Factories, 2022, 21(1): 83.
doi: 10.1186/s12934-022-01808-2 pmid: 35568948
[73]   李雨欣. 放线菌磷源感知转录调控因子介导的营养代谢网络研究. 上海: 华东理工大学, 2019.
[73]   Li Y X. Study on The nutrient metabolism network mediated by phosphate-sensing regulator in actinomycetes. Shanghai: East China University of Science and Technology, 2019.
[74]   赵琪, 闵涛玲, 胡海峰. 激活微生物沉默基因簇合成新型天然产物的研究. 世界临床药物, 2014, 35(8): 501-505.
[74]   Zhao Q, Min T L, Hu H F. Studies on activating silent biosynthetic gene clusters to synthesize new natural products in microorganisms. World Clinical Drugs, 2014, 35(8): 501-505.
[75]   王苗, 王倩, 岳昌武. 链霉菌次级代谢产物生物合成基因簇异源表达研究进展. 贵州医药, 2018, 42(7): 803-805.
[75]   Wang M, Wang Q, Yue C W. Advances in heterologous expression of secondary metabolite biosynthesis gene clusters in Streptomyces. Guizhou Medical Journal, 2018, 42(7): 803-805.
[76]   Rodriguez E, Hu Z H, Ou S, et al. Rapid engineering of polyketide overproduction by gene transfer to industrially optimized strains. Journal of Industrial Microbiology and Biotechnology, 2003, 30(8): 480-488.
doi: 10.1007/s10295-003-0045-1
[77]   Ward S L, Hu Z H, Schirmer A, et al. Chalcomycin biosynthesis gene cluster from Streptomyces bikiniensis: novel features of an unusual ketolide produced through expression of the chm polyketide synthase in Streptomyces fradiae. Antimicrobial Agents and Chemotherapy, 2004, 48(12): 4703-4712.
doi: 10.1128/AAC.48.12.4703-4712.2004
[78]   Zhao C, Huang Y, Guo C, et al. Heterologous expression of spinosyn biosynthetic gene cluster in Streptomyces species is dependent on the expression of rhamnose biosynthesis genes. Journal of Molecular Microbiology and Biotechnology, 2017, 27(3): 190-198.
[79]   Song C Y, Luan J, Cui Q W, et al. Enhanced heterologous spinosad production from a 79-kb synthetic multioperon assembly. ACS Synthetic Biology, 2019, 8(1): 137-147.
doi: 10.1021/acssynbio.8b00402 pmid: 30590919
[80]   宋超逸. 开发新型基因编辑技术用于多杀菌素异源表达和结构衍生. 济南: 山东大学, 2021.
[80]   Song C Y. Development of new gene editing technology for heterologous expression and structural derivation of spinosad. Jinan: Shandong University, 2021.
[81]   易卓, 夏立秋, 丁学知, 等. 通过两种糖多孢菌属菌株原生质体融合提高多杀菌素产量研究. 中国抗生素杂志, 2019, 44(10): 1148-1155.
[81]   Yi Z, Xia L Q, Ding X Z, et al. Study on the increase of spinosad yields by protoplast fusion of two kinds of Saccharopolyspora strains. Chinese Journal of Antibiotics, 2019, 44(10): 1148-1155.
[82]   Huang J, Yu Z, Li M H, et al. High level of spinosad production in the heterologous host Saccharopolyspora erythraea. Applied and Environmental Microbiology, 2016, 82(18): 5603-5611.
doi: 10.1128/AEM.00618-16 pmid: 27401975
[83]   Li H, Pan Y Y, Liu G. Multiplying the heterologous production of spinosad through tandem amplification of its biosynthetic gene cluster in Streptomyces coelicolor. Microbial Biotechnology, 2022, 15(5): 1550-1560.
doi: 10.1111/mbt2.v15.5
[84]   何翔宇. 泰乐菌素生物合成的异源表达及其改造. . 天津: 天津大学, 2020.
[84]   He X Y. Heterologous expression and modification of tylosin biosynthesis. Tianjin: Tianjin University, 2020.
[85]   唐丹. 阿维菌素生物合成基因簇的异源表达研究. 天津: 天津科技大学, 2015.
[85]   Tang D. Study on heterologous expression of the avermectin biosynthetic gene cluster. Tianjin: Tianjin University of Science and Technology, 2015.
[86]   周纪祥, 胡海峰. 异源表达策略在抗生素研究中的应用进展. 世界临床药物, 2012, 33(4): 227-232.
[86]   Zhou J X, Hu H F. Application progress of heterologous expression in antibiotics research. World Clinical Drugs, 2012, 33(4): 227-232.
[87]   Pfeifer B A, Khosla C. Biosynthesis of polyketides in heterologous hosts. Microbiology and Molecular Biology Reviews, 2001, 65(1): 106-118.
pmid: 11238987
[88]   胡春生, 吴祖泽, 张庆林. 聚酮类化合物异源表达研究进展. 生物技术通讯, 2013, 24(4): 573-578.
doi: 10.1023/A:1014820810258
[88]   Hu C S, Wu Z Z, Zhang Q L. Research progress in heterologous express of polyketides. Letters in Biotechnology, 2013, 24(4): 573-578.
doi: 10.1023/A:1014820810258