Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2023, Vol. 43 Issue (2/3): 95-103    DOI: 10.13523/j.cb.2209073
    
The Role of Biomacromolecule Phase Separation in Diseases
ZHOU Xue-yuan,DU He-kang,LU Zeng-zeng,ZHENG Jian-pei,CHEN Qi**()
Fujian Key Laboratory of Innate Immune Biology, Biomedical Research Center of South China, Fujian Normal University Qishan Campus, College Town, Fuzhou 350117, China
Download: HTML   PDF(1575KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

In order to maintain normal physiological activities, cells have evolved a membrane system, which enables various activities to occur efficiently and in an orderly manner in a specific space and time. The involvement of membrane system in material transport, signal transmission, energy metabolism and other processes has been widely understood, but the molecular details related to the assembly and function of membrane-free compartments have not been thoroughly studied. Biological macromolecules form a variety of membrane-free compartments in cells through phase separation, such as nucleolus, centrosome, and stress particles, which are collectively referred to as biomolecular condensates. As a mechanism of aggregation and separation of cellular biochemical reactions, phase separation is ubiquitous in nature and widely involved in many important physiological processes such as signal transduction and gene transcription regulation. The abnormal phase separation is closely related to many human diseases, such as neurodegenerative diseases, cancer and infectious diseases. By introducing the cellular structure and function of phase separation and its mechanism, this paper will further elaborate the role of phase separation in the occurrence and development of diseases.



Key wordsPhase separation      Membrane system      Membrane-free compartments      Biomolecular condensates     
Received: 27 September 2022      Published: 31 March 2023
ZTFLH:  Q819  
Corresponding Authors: **Qi CHEN     E-mail: nfsw@fjnu.edu.cn
Cite this article:

ZHOU Xue-yuan, DU He-kang, LU Zeng-zeng, ZHENG Jian-pei, CHEN Qi. The Role of Biomacromolecule Phase Separation in Diseases. China Biotechnology, 2023, 43(2/3): 95-103.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2209073     OR     https://manu60.magtech.com.cn/biotech/Y2023/V43/I2/3/95

Fig.1 The interaction of phase separated proteins and the regulatory mechanism of phase separation
Fig.2 The role of phase separation in diseases
[1]   Banani S F, Lee H O, Hyman A A, et al. Biomolecular condensates: organizers of cellular biochemistry. Nature Reviews Molecular Cell Biology, 2017, 18(5): 285-298.
doi: 10.1038/nrm.2017.7 pmid: 28225081
[2]   Uversky V N. Intrinsically disordered proteins in overcrowded milieu: membrane-less organelles, phase separation, and intrinsic disorder. Current Opinion in Structural Biology, 2017, 44: 18-30.
doi: S0959-440X(16)30094-X pmid: 27838525
[3]   Li P L, Banjade S, Cheng H C, et al. Phase transitions in the assembly of multivalent signalling proteins. Nature, 2012, 483(7389): 336-340.
doi: 10.1038/nature10879
[4]   Li J Q, Zhang Y, Chen X, et al. Protein phase separation and its role in chromatin organization and diseases. Biomedicine & Pharmacotherapy, 2021, 138: 111520.
doi: 10.1016/j.biopha.2021.111520
[5]   Banani S F, Rice A M, Peeples W B, et al. Compositional control of phase-separated cellular bodies. Cell, 2016, 166(3): 651-663.
doi: S0092-8674(16)30739-5 pmid: 27374333
[6]   Brangwynne C P, Eckmann C R, Courson D S, et al. Germline P granules are liquid droplets that localize by controlled dissolution/condensation. Science, 2009, 324(5935): 1729-1732.
doi: 10.1126/science.1172046 pmid: 19460965
[7]   Du M J, Chen Z J. DNA-induced liquid phase condensation of cGAS activates innate immune signaling. Science, 2018, 361(6403): 704-709.
doi: 10.1126/science.aat1022 pmid: 29976794
[8]   Zeng M L, Chen X D, Guan D S, et al. Reconstituted postsynaptic density as a molecular platform for understanding synapse formation and plasticity. Cell, 2018, 174(5): 1172-1187.e16.
doi: S0092-8674(18)30850-X pmid: 30078712
[9]   Sabari B R, Dall’Agnese A, Boija A, et al. Coactivator condensation at super-enhancers links phase separation and gene control. Science, 2018, 361(6400): eaar3958.
doi: 10.1126/science.aar3958
[10]   Larson A G, Elnatan D, Keenen M M, et al. Liquid droplet formation by HP1α suggests a role for phase separation in heterochromatin. Nature, 2017, 547(7662): 236-240.
doi: 10.1038/nature22822
[11]   Sheu-Gruttadauria J, MacRae I J. Phase transitions in the assembly and function of human miRISC. Cell, 2018, 173(4): 946-957.e16.
doi: S0092-8674(18)30228-9 pmid: 29576456
[12]   Jiang H, Wang S S, Huang Y J, et al. Phase transition of spindle-associated protein regulate spindle apparatus assembly. Cell, 2015, 163(1): 108-122.
doi: 10.1016/j.cell.2015.08.010 pmid: 26388440
[13]   Shan Z L, Tu Y T, Yang Y, et al. Basal condensation of Numb and Pon complex via phase transition during Drosophila neuroblast asymmetric division. Nature Communications, 2018, 9: 737.
doi: 10.1038/s41467-018-03077-3
[14]   Sun D X, Wu R B, Zheng J X, et al. Polyubiquitin chain-induced p 62 phase separation drives autophagic cargo segregation. Cell Research, 2018, 28(4): 405-415.
doi: 10.1038/s41422-018-0017-7
[15]   Feng Z, Chen X D, Wu X D, et al. Formation of biological condensates via phase separation: characteristics, analytical methods, and physiological implications. Journal of Biological Chemistry, 2019, 294(40): 14823-14835.
doi: 10.1074/jbc.REV119.007895 pmid: 31444270
[16]   Simon J R, Carroll N J, Rubinstein M, et al. Programming molecular self-assembly of intrinsically disordered proteins containing sequences of low complexity. Nature Chemistry, 2017, 9(6): 509-515.
doi: 10.1038/nchem.2715 pmid: 28537592
[17]   Elbaum-Garfinkle S, Kim Y, Szczepaniak K, et al. The disordered P granule protein LAF-1 drives phase separation into droplets with tunable viscosity and dynamics. Proceedings of the National Academy of Sciences of the United States of America, 2015, 112(23): 7189-7194.
[18]   Lin Y, Protter D S W, Rosen M K, et al. Formation and maturation of phase-separated liquid droplets by RNA-binding proteins. Molecular Cell, 2015, 60(2): 208-219.
doi: 10.1016/j.molcel.2015.08.018 pmid: 26412307
[19]   Jain A, Vale R D. RNA phase transitions in repeat expansion disorders. Nature, 2017, 546(7657): 243-247.
doi: 10.1038/nature22386
[20]   Alberti S, Gladfelter A, Mittag T. Considerations and challenges in studying liquid-liquid phase separation and biomolecular condensates. Cell, 2019, 176(3): 419-434.
doi: S0092-8674(18)31649-0 pmid: 30682370
[21]   Alberti S, Dormann D. Liquid-liquid phase separation in disease. Annual Review of Genetics, 2019, 53: 171-194.
doi: 10.1146/annurev-genet-112618-043527 pmid: 31430179
[22]   Alberti S, Hyman A A. Are aberrant phase transitions a driver of cellular aging? BioEssays: News and Reviews in Molecular, Cellular and Developmental Biology, 2016, 38(10): 959-968.
doi: 10.1002/bies.v38.10
[23]   Wang Z, Zhang H. Phase separation, transition, and autophagic degradation of proteins in development and pathogenesis. Trends in Cell Biology, 2019, 29(5): 417-427.
doi: S0962-8924(19)30019-4 pmid: 30826216
[24]   Patel A, Lee H O, Jawerth L, et al. A liquid-to-solid phase transition of the ALS protein FUS accelerated by disease mutation. Cell, 2015, 162(5): 1066-1077.
doi: 10.1016/j.cell.2015.07.047 pmid: 26317470
[25]   Rog O, Köhler S, Dernburg A F. The synaptonemal complex has liquid crystalline properties and spatially regulates meiotic recombination factors. eLife, 2017, 6: 21455.
[26]   Zhang H, Ji X, Li P L, et al. Liquid-liquid phase separation in biology: mechanisms, physiological functions and human diseases. Science China Life Sciences, 2020, 63(7): 953-985.
doi: 10.1007/s11427-020-1702-x pmid: 32548680
[27]   Taylor J P, Hardy J, Fischbeck K H. Toxic proteins in neurodegenerative disease. Science, 2002, 296(5575): 1991-1995.
doi: 10.1126/science.1067122 pmid: 12065827
[28]   Murakami T, Qamar S, Lin J Q, et al. ALS/FTD mutation-induced phase transition of FUS liquid droplets and reversible hydrogels into irreversible hydrogels impairs RNP granule function. Neuron, 2015, 88(4): 678-690.
doi: 10.1016/j.neuron.2015.10.030 pmid: 26526393
[29]   Molliex A, Temirov J, Lee J H, et al. Phase separation by low complexity domains promotes stress granule assembly and drives pathological fibrillization. Cell, 2015, 163(1): 123-133.
doi: 10.1016/j.cell.2015.09.015 pmid: 26406374
[30]   Alami N H, Smith R B, Carrasco M A, et al. Axonal transport of TDP-43 mRNA granules is impaired by ALS-causing mutations. Neuron, 2014, 81(3): 536-543.
doi: 10.1016/j.neuron.2013.12.018 pmid: 24507191
[31]   DeJesus-Hernandez M, MacKenzie I R, Boeve B F, et al. Expanded GGGGCC hexanucleotide repeat in noncoding region of C9ORF72 causes chromosome 9p-linked FTD and ALS. Neuron, 2011, 72(2): 245-256.
doi: 10.1016/j.neuron.2011.09.011 pmid: 21944778
[32]   Zu T, Liu Y J, Bañez-Coronel M, et al. RAN proteins and RNA foci from antisense transcripts in C9ORF72 ALS and frontotemporal dementia. Proceedings of the National Academy of Sciences of the United States of America, 2013, 110(51): E4968-E4977.
[33]   Odeh H M, Shorter J. Arginine-rich dipeptide-repeat proteins as phase disruptors in C9-ALS/FTD. Emerging Topics in Life Sciences, 2020, 4(3): 293-305.
doi: 10.1042/ETLS20190167 pmid: 32639008
[34]   Boeynaems S, Bogaert E, Kovacs D, et al. Phase separation of C9orf72 dipeptide repeats perturbs stress granule dynamics. Molecular Cell, 2017, 65(6): 1044-1055.e5.
doi: S1097-2765(17)30128-4 pmid: 28306503
[35]   Brangwynne C P, Tompa P, Pappu R V. Polymer physics of intracellular phase transitions. Nature Physics, 2015, 11(11): 899-904.
doi: 10.1038/nphys3532
[36]   Solomon D A, Smikle R, Reid M J, et al. Altered phase separation and cellular impact in C9orf72-linked ALS/FTD. Frontiers in Cellular Neuroscience, 2021, 15: 664151.
doi: 10.3389/fncel.2021.664151
[37]   Suárez-Calvet M, Neumann M, Arzberger T, et al. Monomethylated and unmethylated FUS exhibit increased binding to transportin and distinguish FTLD-FUS from ALS-FUS. Acta Neuropathologica, 2016, 131(4): 587-604.
doi: 10.1007/s00401-016-1544-2 pmid: 26895297
[38]   Qamar S, Wang G Z, Randle S J, et al. FUS phase separation is modulated by a molecular chaperone and methylation of arginine cation-π interactions. Cell, 2018, 173(3): 720-734.e15.
doi: S0092-8674(18)30388-X pmid: 29677515
[39]   Hasegawa M, Arai T, Nonaka T, et al. Phosphorylated TDP-43 in frontotemporal lobar degeneration and amyotrophic lateral sclerosis. Annals of Neurology, 2008, 64(1): 60-70.
doi: 10.1002/ana.21425 pmid: 18546284
[40]   Monahan Z, Ryan V H, Janke A M, et al. Phosphorylation of the FUS low-complexity domain disrupts phase separation, aggregation, and toxicity. The EMBO Journal, 2017, 36(20): 2951-2967.
doi: 10.15252/embj.201696394
[41]   Ballatore C, Lee V M Y, Trojanowski J Q. Tau-mediated neurodegeneration in Alzheimer’s disease and related disorders. Nature Reviews Neuroscience, 2007, 8(9): 663-672.
doi: 10.1038/nrn2194 pmid: 17684513
[42]   Ambadipudi S, Biernat J, Riedel D, et al. Liquid-liquid phase separation of the microtubule-binding repeats of the Alzheimer-related protein Tau. Nature Communications, 2017, 8: 275.
doi: 10.1038/s41467-017-00480-0 pmid: 28819146
[43]   Wegmann S, Eftekharzadeh B, Tepper K, et al. Tau protein liquid-liquid phase separation can initiate tau aggregation. The EMBO Journal, 2018, 37(7): e98049.
[44]   Scherzinger E, Sittler A, Schweiger K, et al. Self-assembly of polyglutamine-containing huntingtin fragments into amyloid-like fibrils: implications for Huntington’s disease pathology. Proceedings of the National Academy of Sciences of the United States of America, 1999, 96(8): 4604-4609.
[45]   Peskett T R, Rau F, O’Driscoll J, et al. A liquid to solid phase transition underlying pathological huntingtin Exon1 aggregation. Molecular Cell, 2018, 70(4): 588-601.e6.
doi: S1097-2765(18)30277-6 pmid: 29754822
[46]   Su X L, Ditlev J A, Hui E F, et al. Phase separation of signaling molecules promotes T cell receptor signal transduction. Science, 2016, 352(6285): 595-599.
doi: 10.1126/science.aad9964 pmid: 27056844
[47]   Lemmon M A, Schlessinger J. Cell signaling by receptor tyrosine kinases. Cell, 2010, 141(7): 1117-1134.
doi: 10.1016/j.cell.2010.06.011 pmid: 20602996
[48]   Boulay G, Sandoval G J, Riggi N, et al. Cancer-specific retargeting of BAF complexes by a prion-like domain. Cell, 2017, 171(1): 163-178.e19.
doi: S0092-8674(17)30872-3 pmid: 28844694
[49]   Crozat A, Åman P, Mandahl N, et al. Fusion of CHOP to a novel RNA-binding protein in human myxoid liposarcoma. Nature, 1993, 363(6430): 640-644.
doi: 10.1038/363640a0
[50]   Oshidari R, Huang R, Medghalchi M, et al. DNA repair by Rad 52 liquid droplets. Nature Communications, 2020, 11: 695.
doi: 10.1038/s41467-020-14546-z pmid: 32019927
[51]   Pessina F, Giavazzi F, Yin Y D, et al. Functional transcription promoters at DNA double-strand breaks mediate RNA-driven phase separation of damage-response factors. Nature Cell Biology, 2019, 21(10): 1286-1299.
doi: 10.1038/s41556-019-0392-4 pmid: 31570834
[52]   Marzahn M R, Marada S, Lee J H, et al. Higher-order oligomerization promotes localization of SPOP to liquid nuclear speckles. The EMBO Journal, 2016, 35(12): 1254-1275.
doi: 10.15252/embj.201593169
[53]   Bouchard J J, Otero J H, Scott D C, et al. Cancer mutations of the tumor suppressor SPOP disrupt the formation of active, phase-separated compartments. Molecular Cell, 2018, 72(1): 19-36.e8.
doi: S1097-2765(18)30687-7 pmid: 30244836
[54]   Schmid M, Speiseder T, Dobner T, et al. DNA virus replication compartments. Journal of Virology, 2014, 88(3): 1404-1420.
doi: 10.1128/JVI.02046-13 pmid: 24257611
[55]   Caragliano E, Bonazza S, Frascaroli G, et al. Human cytomegalovirus forms phase-separated compartments at viral genomes to facilitate viral replication. Cell Reports, 2022, 38(10): 110469.
doi: 10.1016/j.celrep.2022.110469
[56]   Xu G J, Liu C, Zhou S, et al. Viral tegument proteins restrict cGAS-DNA phase separation to mediate immune evasion. Molecular Cell, 2021, 81(13): 2823-2837.
doi: 10.1016/j.molcel.2021.05.002 pmid: 34015248
[57]   Wang J, Shi C R, Xu Q, et al. SARS-CoV-2 nucleocapsid protein undergoes liquid-liquid phase separation into stress granules through its N-terminal intrinsically disordered region. Cell Discovery, 2021, 7: 5.
doi: 10.1038/s41421-020-00240-3 pmid: 33479219
[58]   Risso-Ballester J, Galloux M, Cao J J, et al. A condensate-hardening drug blocks RSV replication in vivo. Nature, 2021, 595(7868): 596-599.
doi: 10.1038/s41586-021-03703-z
[59]   Fisher R A, Gollan B, Helaine S. Persistent bacterial infections and persister cells. Nature Reviews Microbiology, 2017, 15(8): 453-464.
doi: 10.1038/nrmicro.2017.42 pmid: 28529326
[60]   Munder M C, Midtvedt D, Franzmann T, et al. A pH-driven transition of the cytoplasm from a fluid- to a solid-like state promotes entry into dormancy. eLife, 2016, 5: 09347.
[61]   Quiroz F G, Fiore V F, Levorse J, et al. Liquid-liquid phase separation drives skin barrier formation. Science, 2020, 367(6483): eaax9554.
doi: 10.1126/science.aax9554
[62]   Zhu G Y, Xie J J, Kong W N, et al. Phase separation of disease-associated SHP2 mutants underlies MAPK hyperactivation. Cell, 2020, 183(2): 490-502.e18.
doi: 10.1016/j.cell.2020.09.002
[63]   Zhou W, Mohr L, Maciejowski J, et al. cGAS phase separation inhibits TREX1-mediated DNA degradation and enhances cytosolic DNA sensing. Molecular Cell, 2021, 81(4): 739-755.e7.
doi: 10.1016/j.molcel.2021.01.024 pmid: 33606975
No related articles found!