Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2023, Vol. 43 Issue (2/3): 190-200    DOI: 10.13523/j.cb.2210018
    
Market Analysis and Countermeasures for Targeted Protein Degradation Drugs
LIU Shao-jin1,**(),DOU Shu-zhen1,WANG Jun-shu1,WU Hai-ming2,ZOU Hui1
1 Institute of Science and Technology Strategy, Jiangxi Academy of Sciences, Nanchang 330096, China
2 Halocinch Medical Technology (Shenzhen) Co., Ltd, Shenzhen 518109, China
Download: HTML   PDF(822KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Targeted protein degradation technology breaks the limitations of traditional therapies and is considered to be a revolutionary technology in the field of biomedicine due to its high activity, high selectivity and targeting of “undruggable”targets. It has developed into one of the most cutting-edge and effective disease treatment strategies. In the past two decades, various degradation technologies based on targeted protein degradation systems have been emerging. Among them, small molecule targeted protein degradation drugs, represented by molecular glues and proteolysis-targeting chimeras, have made rapid progress. A large number of clinical trials and evaluations have fully confirmed the universality and effectiveness of targeted protein degradation. The technology brings new potential treatment options for some “incurable” diseases, and has great development and utilization value and market potential. In order to further promote the innovation and development of China’s targeted protein degradation drug industry, quantitative and qualitative combination of analytical methods are used in this paper to deeply analyze the current situation and market trends of technology and product research and development of targeted protein degradation drugs industry domestically and overseas. Meanwhile, targeted countermeasures are put forward from the perspective of future breakthrough direction and institutional mechanism innovation.



Key wordsTargeted protein degradation      Molecular glue      PROTAC     
Received: 12 October 2022      Published: 31 March 2023
ZTFLH:  Q816  
Corresponding Authors: **Shao-jin LIU     E-mail: liusj9112@126.com
Cite this article:

LIU Shao-jin, DOU Shu-zhen, WANG Jun-shu, WU Hai-ming, ZOU Hui. Market Analysis and Countermeasures for Targeted Protein Degradation Drugs. China Biotechnology, 2023, 43(2/3): 190-200.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2210018     OR     https://manu60.magtech.com.cn/biotech/Y2023/V43/I2/3/190

通用名 中文名称 公司名 靶点 适应证 获授权年份
Thalidomide 沙利度胺 Grünenthal GmbH Tumor necrosis factor(TNF) 麻风结节性红斑、血液肿瘤、骨髓瘤 1956、1998、2006
Lenalidomide 来那度胺 Celgene Cereblon(CRBN) 多发性骨髓瘤 2005
Pomalidomide 泊马度胺 Celgene Cereblon(CRBN) 多发性骨髓瘤 2013
Table 1 Global situation of TPD drugs approved until September 2022
Fig.1 Market size of lenalidomide, pomalidomide from 2017 to 2021 Source: Cortellis / BMS
Fig.2 The number of publications on molecular glue in PubMed from 2015 to 2022
药物名称 研发公司 靶蛋白 适应证 临床试验阶段
CC-220 Celgene (BMS) IKZF1/3 多发性骨髓瘤 II期
CC-122 Celgene (BMS) IKZF1/3 血液系统和实体恶性肿瘤 II期
CFT-7455 C4 Therapeutics IKZF1/3 多发性骨髓瘤、淋巴癌 II期
E7070 Eisai DCAF15 成人实体瘤、白血病 II期
E7820 Eisai DCAF15 恶性实体瘤、直肠癌 II期
CC-92480 Celgene (BMS) IKZF1/3 多发性骨髓瘤 II期
CC-99282 Celgene (BMS) IKZF1/3 淋巴癌 I期
CC-90009 Celgene (BMS) GSPT1 急性髓系白血病 I期
DKY-709 Novartis IKZF2 鼻喉癌、结直肠癌、黑色素瘤等 I期
DT-2216 Dialectic BCL-xL 血液癌、实体瘤 I期
BAY-2666605 Bayer IKZF1/3 黑色素瘤、肿瘤 I期
BTX-1188 BioTheryX GSPT1、IKZF1/3 血液系统和实体恶性肿瘤 I期
ICP-490 诺诚健华 SEL1L2 多发性骨髓瘤等肿瘤 I期
KPG-818 康朴生物 IKZF1/3 系统性红斑狼疮 Ib/IIa期
KPG-121 康朴生物 IKZF1/3、CK1α 转移性去势抵抗性前列腺癌 I期
TQB-3820 正大天晴 IKZF1/3 恶性血液肿瘤 I期
Table 2 Clinical trial data of global molecular glue degrader until September 2022
Fig.3 The number of publications on PROTACs in PubMed from 2015 to 2022
药物名称 研发公司 靶蛋白 适应证 临床试验阶段
ARV-110 Arvinas AR 前列腺癌 II期
ARV-471 Arvinas ER 乳腺癌 II期
ARV-766 Arvinas AR 前列腺癌 I期
KT-474 Kymera/Sanofi IRAK4 免疫性炎症性疾病 I期
KT-333 Kymera STAT3 血液肿瘤和实体瘤 I期
KT-413 Kymera IRAK4 B细胞淋巴瘤 I期
CC-94676 BMS AR 前列腺癌 I期
NX-2127 Nurix BTK B细胞恶性肿瘤 I期
NX-5948 Nurix BTK B细胞恶性肿瘤 I期
FHD-609 Foghorn BRD9 晚期滑膜肉瘤 I期
AR-LDD C4 Therapeutics AR 前列腺癌 I期
DT-2216 Dialectic BCL-xL 血液癌症和实体瘤 I期
HSK-29116 海思科 BTK B细胞恶性肿瘤 I期
HP-518 海创药业 AR 前列腺癌 I期
AC-0682 冰洲石生物 ER HR阳性乳腺癌 I期
AC-0176 冰洲石生物 AR 前列腺癌 I期
LNK-01002 凌科药业 RasGTPase 急性髓系白血病 I期
GT-20029 开拓药业 AR 雄激素性脱发、痤疮 I期
BGB-16673 百济神州 BTK B细胞淋巴瘤 I期
RNK-05047 珃诺生物 BRD4 晚期实体瘤和淋巴瘤 1/2期
Table 3 Clinical trial data of global PROTACs until September 2022
Fig.4 Forecast of market size of anti-tumor drugs in the world and China from 2016 to 2022 Source: Frost & Sullivan
[1]   Burslem G M, Crews C M. Small-molecule modulation of protein homeostasis. Chemical Reviews, 2017, 117(17): 11269-11301.
doi: 10.1021/acs.chemrev.7b00077 pmid: 28777566
[2]   Verdine G L, Walensky L D. The challenge of drugging undruggable targets in cancer: lessons learned from targeting BCL-2 family members. Clinical Cancer Research: An Official Journal of the American Association for Cancer Research, 2007, 13(24): 7264-7270.
doi: 10.1158/1078-0432.CCR-07-2184
[3]   Samarasinghe K T G, Crews C M. Targeted protein degradation: a promise for undruggable proteins. Cell Chemical Biology, 2021, 28(7): 934-951.
doi: 10.1016/j.chembiol.2021.04.011 pmid: 34004187
[4]   Cromm P M, Crews C M. Targeted protein degradation: from chemical biology to drug discovery. Cell Chemical Biology, 2017, 24(9): 1181-1190.
doi: S2451-9456(17)30187-3 pmid: 28648379
[5]   Naito M. Targeted protein degradation and drug discovery. The Journal of Biochemistry, 2022, 172(2): 61-69.
doi: 10.1093/jb/mvac041
[6]   张晓元, 张艳艳, 孙晓康, 等. 靶向蛋白质降解技术研究进展. 生物化学与生物物理进展, 2022, 49(1): 171-182.
[6]   Zhang X Y, Zhang Y Y, Sun X K, et al. Research progress of targeted protein degradation technology. Progress in Biochemistry and Biophysics, 2022, 49(1): 171-182.
[7]   Wang C, Zhang Y J, Zhang T T, et al. Proteolysis-targeting chimaeras (PROTACs) as pharmacological tools and therapeutic agents: advances and future challenges. Journal of Enzyme Inhibition and Medicinal Chemistry, 2022, 37(1): 1667-1693.
doi: 10.1080/14756366.2022.2076675 pmid: 35702041
[8]   Xi J Y, Zhang R Y, Chen K, et al. Advances and perspectives of proteolysis targeting chimeras (PROTACs) in drug discovery. Bioorganic Chemistry, 2022, 125: 105848.
doi: 10.1016/j.bioorg.2022.105848
[9]   Zhao L, Zhao J, Zhong K H, et al. Targeted protein degradation: mechanisms, strategies and application. Signal Transduction and Targeted Therapy, 2022, 7: 113.
doi: 10.1038/s41392-022-00966-4 pmid: 35379777
[10]   Ciechanover A. The ubiquitin-proteasome proteolytic pathway. Cell, 1994, 79(1): 13-21.
doi: 10.1016/0092-8674(94)90396-4 pmid: 7923371
[11]   Ballabio A, Bonifacino J S. Lysosomes as dynamic regulators of cell and organismal homeostasis. Nature Reviews Molecular Cell Biology, 2020, 21(2): 101-118.
doi: 10.1038/s41580-019-0185-4 pmid: 31768005
[12]   Eldridge A G, O’Brien T. Therapeutic strategies within the ubiquitin proteasome system. Cell Death & Differentiation, 2010, 17(1): 4-13.
[13]   Gustafson J L, Neklesa T K, Cox C S, et al. Small-molecule-mediated degradation of the androgen receptor through hydrophobic tagging. Angewandte Chemie (International Ed in English), 2015, 54(33): 9659-9662.
doi: 10.1002/anie.v54.33
[14]   Weagel E G, Foulks J M, Siddiqui A, et al. Molecular glues: enhanced protein-protein interactions and cell proteome editing. Medicinal Chemistry Research, 2022, 31(7): 1068-1087.
doi: 10.1007/s00044-022-02882-2
[15]   Sakamoto K M, Kim K B, Kumagai A, et al. Protacs:Chimeric molecules that target proteins to the Skp1-Cullin-F box complex for ubiquitination and degradation. Proceedings of the National Academy of Sciences of the United States of America, 2001, 98(15): 8554-8559.
[16]   Metzger M B, Pruneda J N, Klevit R E, et al. RING-type E3 ligases: master manipulators of E 2 ubiquitin-conjugating enzymes and ubiquitination. Biochimica et Biophysica Acta (BBA) - Molecular Cell Research, 2014, 1843(1): 47-60.
doi: 10.1016/j.bbamcr.2013.05.026
[17]   Luh L M, Scheib U, Juenemann K, et al. Prey for the proteasome: targeted protein degradation-a medicinal chemist’s perspective. Angewandte Chemie (International Ed in English), 2020, 59(36): 15448-15466.
[18]   Banik S M, Pedram K, Wisnovsky S, et al. Lysosome-targeting chimaeras for degradation of extracellular proteins. Nature, 2020, 584(7820): 291-297.
doi: 10.1038/s41586-020-2545-9
[19]   Cotton A D, Nguyen D P, Gramespacher J A, et al. Development of antibody-based PROTACs for the degradation of the cell-surface immune checkpoint protein PD-L1. Journal of the American Chemical Society, 2021, 143(2): 593-598.
doi: 10.1021/jacs.0c10008 pmid: 33395526
[20]   Zhang H, Han Y, Yang Y F, et al. Covalently engineered nanobody chimeras for targeted membrane protein degradation. Journal of the American Chemical Society, 2021, 143(40): 16377-16382.
doi: 10.1021/jacs.1c08521 pmid: 34596400
[21]   Takahashi D, Moriyama J, Nakamura T, et al. AUTACs: cargo-specific degraders using selective autophagy. Molecular Cell, 2019, 76(5): 797-810.e10.
doi: S1097-2765(19)30694-X pmid: 31606272
[22]   Fu Y H, Chen N X, Wang Z Y, et al. Degradation of lipid droplets by chimeric autophagy-tethering compounds. Cell Research, 2021, 31(9): 965-979.
doi: 10.1038/s41422-021-00532-7 pmid: 34239073
[23]   Miao Y Y, Gao Q Q, Mao M H, et al. Bispecific aptamer chimeras enable targeted protein degradation on cell membranes. Angewandte Chemie (International Ed in English), 2021, 60(20): 11267-11271.
doi: 10.1002/anie.v60.20
[24]   Ji C H, Kim H Y, Lee M J, et al. The AUTOTAC chemical biology platform for targeted protein degradation via the autophagy-lysosome system. Nature Communications, 2022, 13: 904.
doi: 10.1038/s41467-022-28520-4 pmid: 35173167
[25]   Lin J Y, Jin J M, Shen Y W, et al. Emerging protein degradation strategies: expanding the scope to extracellular and membrane proteins. Theranostics, 2021, 11(17): 8337-8349.
doi: 10.7150/thno.62686 pmid: 34373745
[26]   Ito T, Ando H, Suzuki T, et al. Identification of a primary target of thalidomide teratogenicity. Science, 2010, 327(5971): 1345-1350.
doi: 10.1126/science.1177319 pmid: 20223979
[27]   Chanan-Khan A A, Swaika A, Paulus A, et al. Pomalidomide: the new immunomodulatory agent for the treatment of multiple myeloma. Blood Cancer Journal, 2013, 3(9): e143.
doi: 10.1038/bcj.2013.38
[28]   Lopez-Girona A, Mendy D, Ito T, et al. Cereblon is a direct protein target for immunomodulatory and antiproliferative activities of lenalidomide and pomalidomide. Leukemia, 2012, 26(11): 2326-2335.
doi: 10.1038/leu.2012.119 pmid: 22552008
[29]   Fischer E S, Böhm K, Lydeard J R, et al. Structure of the DDB1-CRBN E 3 ubiquitin ligase in complex with thalidomide. Nature, 2014, 512(7512): 49-53.
doi: 10.1038/nature13527
[30]   Ozawa Y, Sugi N H, Nagasu T, et al. E7070, a novel sulphonamide agent with potent antitumour activity in vitro and in vivo. European Journal of Cancer, 2001, 37(17): 2275-2282.
pmid: 11677118
[31]   Funahashi Y, Sugi N H, Semba T, et al. Sulfonamide derivative, E7820, is a unique angiogenesis inhibitor suppressing an expression of integrin alpha2 subunit on endothelium. Cancer Research, 2002, 62(21): 6116-6123.
pmid: 12414636
[32]   Abbate F, Casini A, Owa T, et al. Carbonic anhydrase inhibitors: E7070, a sulfonamide anticancer agent, potently inhibits cytosolic isozymes I and II, and transmembrane, tumor-associated isozyme IX. Bioorganic & Medicinal Chemistry Letters, 2004, 14(1): 217-223.
doi: 10.1016/j.bmcl.2003.09.062
[33]   Mayor-Ruiz C, Bauer S, Brand M, et al. Rational discovery of molecular glue degraders via scalable chemical profiling. Nature Chemical Biology, 2020, 16(11): 1199-1207.
doi: 10.1038/s41589-020-0594-x
[34]   Słabicki M, Kozicka Z, Petzold G, et al. The CDK inhibitor CR8 acts as a molecular glue degrader that depletes cyclin K. Nature, 2020, 585(7824): 293-297.
doi: 10.1038/s41586-020-2374-x
[35]   Winter G E, Buckley D L, Paulk J, et al. Phthalimide conjugation as a strategy for in vivo target protein degradation. Science, 2015, 348(6241): 1376-1381.
doi: 10.1126/science.aab1433 pmid: 25999370
[36]   Békés M, Langley D R, Crews C M. PROTAC targeted protein degraders: the past is prologue. Nature Reviews Drug Discovery, 2022, 21(3): 181-200.
doi: 10.1038/s41573-021-00371-6
No related articles found!