Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2020, Vol. 40 Issue (11): 10-20    DOI: 10.13523/j.cb.2008128
    
Construction of Hippocampal Cortical Specific Knockout AEG-1 Gene Mice and Preliminary Study on Its Behavior
YU Chun-yang1,ZHANG Chun1,GUO Le3,WAN Pan-pan1,HUANG Yue4,WANG Feng1,5**(),LIU Kun-mei1,2**()
1 Ningxia Key Laboratory of Cerebrocranial Diseases, Yinchuan 750004, China
2 Medical Science Research Institution of Ningxia Hui Autonomous Region, Yinchuan 750004, China
3 Clinical Medical College of Ningxia Medical University, Yinchuan 750004, China
4 School of Pharmacy, Ningxia Medical University, Yinchuan 750004, China
5 Department of Neurosurgery, General Hospital of Ningxia Medical University, Yinchuan 750004, China
Download: HTML   PDF(26259KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Astrocyte upregulating gene-1 (AEG-1) is one of found in the brain tissue of HIV patients with dementia. In recent years, studies have shown that AEG-1 regulates a variety of central nervous system diseases, but its study on learning and cognition has not been reported. Hippocampus and cortex play an important role in learning and cognition. In this paper, CRISPR/Cas9 technology combined with Cre/loxp system was used to construct hippocampal cortex specific AEG-1 knockout mice, and the correlation between AEG-1 and learning cognition was preliminarily studied on the basis of this model mouse. Firstly, flox homozygous AEG-1fl/fl mice inserted into the loxp site were constructed, and bred with hippocampal cortex specific Cre+/+ recombinase expressing tool mice. Secondly, hippocampal cortex specific AEG-1 knockout mice with AEG-1 fl/fl Cre+ were selected by PCR. Thirdly,Western blot and immunofluorescence were used to detect the knockout efficiency of AEG-1 gene in the hippocampus and cortex. Last but not least, the new object recognition box and 3-chambered social interaction box combined with SMART 3.0 analysis system were used to preliminarily evaluate the learning memory and social interaction behavior of hippocampal cortico-specific AEG-1 knockout mice. Results: The knockout mice with AEG-1 fl/fl Cre+ were successfully obtained.AEG-1 protein expression in hippocampus and cortex of mice was significantly lower than that in control group. The new object recognition results showed that the discriminant coefficient of AEG-1 knockout mice was significantly lower than that of the control group, indicating that the learning and memory ability of AEG-1 knockout mice was weak. However, the social interaction showed that there was no significant difference in social interaction between AEG-1 knockout mice and the control group. These results lay the foundation for future studies on AEG-1 in learning cognition.



Key wordsAEG-1      Cre/loxp system      Conditional knockout      Learning and cognition     
Received: 20 August 2020      Published: 11 December 2020
ZTFLH:  Q819  
Corresponding Authors: Feng WANG,Kun-mei LIU     E-mail: nxwwang@163.com;lkm198507@126.com
Cite this article:

YU Chun-yang,ZHANG Chun,GUO Le,WAN Pan-pan,HUANG Yue,WANG Feng,LIU Kun-mei. Construction of Hippocampal Cortical Specific Knockout AEG-1 Gene Mice and Preliminary Study on Its Behavior. China Biotechnology, 2020, 40(11): 10-20.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2008128     OR     https://manu60.magtech.com.cn/biotech/Y2020/V40/I11/10

Fig.1 Constructive strategy of AEG-1 flox knockout mice (a) Donor vector and CRISPR/Cas9 system (b)Targeted vector
Fig.2 Schematic design of primers for AEG-1 flox mouse identification
序号 引物名称 引物序列 GC(%) Tm 条带大小 引物说明
1 200244-Mtdh-ssDNA-5wt-tF1 GCAGACACTGGCTCTCAAATATATCC 46.2 56.5 fl/fl=570bp
fl/wt=
570/471bp
5'初筛,跨5'loxp位点的两端,检测wt;可用于纯合子鉴定
200244-Mtdh-ssDNA-5wt-tR1 TCTTCATAACTGATCTGCATTTGGC 40 56.4
2 200244-Mtdh-ssDNA-D5-5tF1 ACTAGGTTTCAGACAAGATTAGCCATG 40.7 55.5 fl=527bp
ft=none
D5-5
common_En2-R CCAACTGACCTTGGGCAAGAACAT 50 60.1
3 ZMK2F4 GCATCGCATTGTCTGAGTAGGTG 52.2 60.1 fl=534bp
wt=none
D5-3
200244-Mtdh-ssDNA-D5-3tF1 CATGGAGTTCAGGTGCTAATACCAT 44.0 55.3
4 200244-Mtdh-ssDNA-D3-5tF1 GGTTGGAATTGACCTACAAAGTGC 45.8 55.7 fl=514bp
wt=none
D3-5
LAR3 CACAACGGGTTCTTCTGTTAGTCC 50.0 55.8
5 Neo-3F TCTGAGGCGGAAAGAACCAG 55.0 54.3 fl=499bp
wt=none
D3-3
200244-Mtdh-ssDNA-D3-3tR1 AGTTAGCTCAACTCTGAGGCCACA 50.0 56.2
Table 1 Primer information of AEG-1 flox mouse gene identification
Fig.3 Breeding flow chart of AEG-1fl/flCre+
序号 引物名称 引物序列 GC(%) Tm 条带大小 引物说明
1 200244-Mtdh-ssDNA-5wt-tF1 GCAGACACTGGCTCTCAAATATATCC 46.2 56.5 fl/fl=570bp
fl/wt=570/471bp
鉴定是否纯合
200244-Mtdh-ssDNA-5wt-tR1 TCTTCATAACTGATCTGCATTTGGC 40 56.4
2 Neo-3F
200244-Mtdh-ssDNA-D3-3tR1
TCTGAGGCGGAAAGAACCAG
AGTTAGCTCAACTCTGAGGCCACA
55.0 54.3 fl=499bp
wt=none
null=none
鉴定3'loxp
50.0 56.2
3 Cre-up GCCTGCATTACCGGTCGATGC 50.0 54.6 T:481bp 鉴定Emx1 -CRE
Cre-low CAGGGTGTTATAAGCAATCCC 53.0 55.0
Table 2 Information of primers for AEG-1fl/wt Cre+ mouse
Fig.4 Pattern diagram of novel object recognition
Fig.5 Pattern diagram of 3-chambered social test
Fig.6 PCR identification results of mice with AEG-1fl/ wt genotype (a) PCR genotyping results of the primer 1 (b) PCR genotyping results of the primer 2 (c) PCR genotyping results of the primer 3 (d) PCR genotyping results of the primer 4 (e) PCR genotyping results of the primer 5 B6: Negative control of which template is genomic DNA of C57BL/6J mice; N: Blank control without template. TRANS 2K PLUS II marker size: 8 000bp, 5 000bp, 3 000bp, 2 000bp, 1 000bp, 750bp, 500bp, 250bp, 100bp
Fig.7 PCR identification results of mice with AEG-1fl/flCre+ genotype (a) PCR genotyping results of the primer 1 (b) PCR genotyping results of the primer 2 (c) PCR genotyping results of the primer 3 Marker size: 700bp, 600bp, 500bp, 400bp, 300bp, 200bp, 100bp
Fig.8 Detection of expression of AEG-1 in the hippocampus and cortex by Western blot (a) AEG-1 and GAPDH protein were detected by western blot (b) Quantitative data of densitometric analyses The ratio of AEG-1 protein levels to GAPDH were displayed as mean ± SD, n=3, *** P<0.001 vs. wt group. H: Hippocampus; C: Cortex; KO: Knock out
Fig.9 Detection of expression of AEG-1 in the hippocampus and cortex by immunofluorescence (a-d) The quantity of AEG-1 specific neurocytes expression in AEG-1 KO homozygous mice was significantly reduced compared with wt mice in the hippocampal CA1 region (a), CA3 region (b), DG region (c) and cortical region (d) (e-h) Bar charts compare the numbers of AEG-1 KO neurocytes to the wt in the CA1(e), CA3(f), DG(g) districts of the hippocampus and in cortex(h) LAS X software analyzed the results of KO group **** P<0.000 1 vs wt group (Scale bar:25μm)
Fig.10 Detection of learning cognitive ability of AEG-1 KO mice by novel object recognition
Fig.11 Detection of social interaction ability of AEG-1 KO mice by 3-chambered social test
[1]   Emdad L, Das S K, Hu B, et al. AEG-1/MTDH/LYRIC: A promiscuous protein partner critical in cancer, obesity, and CNS diseases. Adv Cancer Res, 2016,131:97-132.
doi: 10.1016/bs.acr.2016.05.002 pmid: 27451125
[2]   Lee S G, Kang D C, Desalle R, et al. AEG-1/MTDH/LYRIC, the beginning: initial cloning, structure, expression profile, and regulation of expression. Adv Cancer Res, 2013,120:1-38.
pmid: 23889986
[3]   Su Z Z, Chen Y, Kang D C, et al. Customized rapid subtraction hybridization (RaSH) gene microarrays identify overlapping expression changes in human fetal astrocytes resulting from human immunodeficiency virus-1 infection or tumor necrosis factor-alpha treatment. Gene, 2003,306:67-78.
doi: 10.1016/s0378-1119(03)00404-9 pmid: 12657468
[4]   Carnemolla A, Fossale E, Agostoni E, et al. Rrs1 is involved in endoplasmic reticulum stress response in Huntington disease. J Biol Chem, 2009,284(27):18167-18173.
doi: 10.1074/jbc.M109.018325 pmid: 19433866
[5]   Roussel B D, Kruppa A J, Miranda E, et al. Endoplasmic reticulum dysfunction in neurological disease. Lancet Neurol, 2013,12(1):105-118.
doi: 10.1016/S1474-4422(12)70238-7 pmid: 23237905
[6]   Fricker M, Hollinshead M, White N, et al. Interphase nuclei of many mammalian cell types contain deep, dynamic, tubular membrane-bound invaginations of the nuclear envelope. J Cell Biol, 1997,136(3):531-544.
doi: 10.1083/jcb.136.3.531 pmid: 9024685
[7]   Anttila V, Stefansson H, Kallela M, et al. Genome-wide association study of migraine implicates a common susceptibility variant on 8q22.1. Nat Genet, 2010,42(10):869-873.
doi: 10.1038/ng.652 pmid: 20802479
[8]   Kang D C, Su Z Z, Sarkar D, et al. Cloning and characterization of HIV-1-inducible astrocyte elevated gene-1, AEG-1. Gene, 2005,353(1):8-15.
doi: 10.1016/j.gene.2005.04.006 pmid: 15927426
[9]   Ligthart L, de Vries B, Smith A V, et al. Meta-analysis of genome-wide association for migraine in six population-based European cohorts. Eur J Hum Genet, 2011,19(8):901-907.
doi: 10.1038/ejhg.2011.48 pmid: 21448238
[10]   Antunes M S, Goes A T, Boeira S P, et al. Protective effect of hesperidin in a model of Parkinson’s disease induced by 6-hydroxydopamine in aged mice. Nutrition, 2014,30(11-12):1415-1422.
pmid: 25280422
[11]   Cantarella G, Di Benedetto G, Puzzo D, et al. Neutralization of TNFSF10 ameliorates functional outcome in a murine model of Alzheimer’s disease. Brain, 2015,138(Pt 1):203-216.
doi: 10.1093/brain/awu318 pmid: 25472798
[12]   Sharma S, Haselton J, Rakoczy S, et al. Spatial memory is enhanced in long-living Ames dwarf mice and maintained following kainic acid induced neurodegeneration. Mech Ageing Dev, 2010,131(6):422-435.
doi: 10.1016/j.mad.2010.06.004 pmid: 20561541
[13]   Anttila V, Wessman M, Kallela M, et al. Towards an understanding of genetic predisposition to migraine. Genome Med, 2011,3(3):17.
doi: 10.1186/gm231 pmid: 21457514
[14]   Sharma S, Rakoczy S, Brown-Borg H. Assessment of spatial memory in mice. Life Sci, 2010,87(17-18):521-536.
doi: 10.1016/j.lfs.2010.09.004 pmid: 20837032
[15]   Ghafouri M, Amini S, Khalili K, et al. HIV-1 associated dementia: symptoms and causes. Retrovirology, 2006,3:28.
doi: 10.1186/1742-4690-3-28 pmid: 16712719
[16]   Mcarthur J C, Steiner J, Sacktor N, et al. Human immunodeficiency virus-associated neurocognitive disorders: Mind the gap. Ann Neurol, 2010,67(6):699-714.
doi: 10.1002/ana.22053 pmid: 20517932
[17]   Volterra A, Meldolesi J. Astrocytes, from brain glue to communication elements: the revolution continues. Nat Rev Neurosci, 2005,6(8):626-640.
doi: 10.1038/nrn1722 pmid: 16025096
[18]   Pereira A J, Furlan F A. Astrocytes and human cognition: modeling information integration and modulation of neuronal activity. Prog Neurobiol, 2010,92(3):405-420.
[19]   Laurent C, Buee L, Blum D. Tau and neuroinflammation: What impact for Alzheimer’s disease and tauopathies. Biomed J, 2018,41(1):21-33.
pmid: 29673549
[20]   Spangenberg E E, Lee R J, Najafi A R, et al. Eliminating microglia in Alzheimer’s mice prevents neuronal loss without modulating amyloid-beta pathology. Brain, 2016,139(Pt 4):1265-1281.
doi: 10.1093/brain/aww016 pmid: 26921617
[21]   Chun H, Lee C J. Reactive astrocytes in Alzheimer’s disease: A double-edged sword. Neurosci Res, 2018,126:44-52.
pmid: 29225140
[22]   Su Z Z, Kang D C, Chen Y, et al. Identification and cloning of human astrocyte genes displaying elevated expression after infection with HIV-1 or exposure to HIV-1 envelope glycoprotein by rapid subtraction hybridization, RaSH. Oncogene, 2002,21(22):3592-3602.
doi: 10.1038/sj.onc.1205445 pmid: 12032861
[23]   Lee S G, Kang D C, Desalle R, et al. AEG-1/MTDH/LYRIC, the beginning: initial cloning, structure, expression profile, and regulation of expression. Adv Cancer Res, 2013,120:1-38.
doi: 10.1016/B978-0-12-401676-7.00001-2 pmid: 23889986
[24]   Brambilla L, Martorana F, Rossi D. Astrocyte signaling and neurodegeneration: new insights into CNS disorders. Prion, 2013,7(1):28-36.
doi: 10.4161/pri.22512 pmid: 23093800
[25]   Ricci G, Volpi L, Pasquali L, et al. Astrocyte-neuron interactions in neurological disorders. J Biol Phys, 2009,35(4):317-336.
doi: 10.1007/s10867-009-9157-9
[26]   Vartak-Sharma N, Ghorpade A. Astrocyte elevated gene-1 regulates astrocyte responses to neural injury: implications for reactive astrogliosis and neurodegeneration. J Neuroinflammation, 2012,9:195.
doi: 10.1186/1742-2094-9-195 pmid: 22884085
[27]   Farhy-Tselnicker I, Allen N J. Astrocytes, neurons, synapses: a tripartite view on cortical circuit development. Neural Dev, 2018,13(1):7.
doi: 10.1186/s13064-018-0104-y pmid: 29712572
[28]   Liu Z, Chopp M. Astrocytes, therapeutic targets for neuroprotection and neurorestoration in ischemic stroke. Prog Neurobiol, 2016,144:103-120.
doi: 10.1016/j.pneurobio.2015.09.008 pmid: 26455456
[1] SUN Yi-ping, WANG Yue, JIN Zhen, WANG Xiao-yan, SUN Lei, ZHANG Xuan, FENG Chong, ZHOU Xiao-hua. Establishment and Phenotype Analysis of SHBG Knockout Mouse Model[J]. China Biotechnology, 2017, 37(8): 39-45.