Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2020, Vol. 40 Issue (9): 11-17    DOI: 10.13523/j.cb.2004031
    
Agrobacterium-mediated Transformation and the Functions of Pks in Marine-derived Penicillium oxalicum
MENG Xiao-lin,PANG Xi-ming,WANG Jie()
College of Food Science, South China Agricultural University, Guangzhou 510642, China
Download: HTML   PDF(6577KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

To investigate the functions of polyketide synthases (PKS) in Penicillium oxalicum SCSGAF0023, a marine gorgonian coral-associated fungus, the method of Agrobacterium-mediated transformation in P. oxalicum SCSGAF0023 was constructed and used to obtain the disruption mutants of Pks by homologous recombination. The roles of Pks in P. oxalicum SCSGAF0023 were characterized by multi-phenotypic analyses under normal and stressful conditions. An efficient genetic transformation system of P. oxalicum SCSGAF0023 was established under the condition of p0380-hygB being binary vector and conidia being the recipient. The transformation efficiency was the highest when 107 conidia/ml was co-cultivated with Agrobacterium tumefaciens AGL-1 with the OD600 of 0.5 under the induction of 200μmol/L acetoyringone (AS) at 25℃. Based on the Agrobacterium-mediated transformation, the disruption mutants of Pks were obtained, and it was the first reported that Pks positively regulated the conidiation but did not affect the environmental adaptation in P. oxalicum SCSGAF0023, which will be helpful for further investigation on the relationships between PKSs and fungal growth, development and environmental adaptation.



Key wordsPenicillium oxalicum      Agrobacterium-mediated transformation      Polyketide synthase      Fungal growth and development      Environmental adaptation     
Received: 22 April 2020      Published: 12 October 2020
ZTFLH:  Q819  
Corresponding Authors: Jie WANG     E-mail: wangjielangjing@126.com
Cite this article:

MENG Xiao-lin,PANG Xi-ming,WANG Jie. Agrobacterium-mediated Transformation and the Functions of Pks in Marine-derived Penicillium oxalicum. China Biotechnology, 2020, 40(9): 11-17.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2004031     OR     https://manu60.magtech.com.cn/biotech/Y2020/V40/I9/11

Primers Paired sequences (5'-3')* Purpose
hygB-F/R AAAAAGAGCTCGACGTTAACTGATATTGAAGGAGC /
AAAAACTCGAGAACCCAGGGGCTGGTGAC
Cloning the full length of hygB (1 898bp)
L1/L2 AAAAACCCGGGTGGCATTGATTCCAGAGACT /
AAAAAGGATCCCCAGGACAAGTCACGAAGGT
Cloning Pks 5'-end (1 979bp)
R1/R2 AAAAAAGATCTTACAGTGGTCTCCTTTCCCG /
AAAAAACTAGTACATTGTGCCACTCATCCAG
Cloning Pks 3'-end (2 217bp)
D1/D2 AGCCTATCTCAGAGCAACGC / CCAGAGAGCACCAAGAGCAG PCR detecting Pks
Table 1 Paired primers used for the manipulation of P. oxalicum Pks
Fig.1 PCR identification for the positive transformants of p0380-hygB M: 250bp DNA ladder
Fig.2 The influences of incubation conditions on the transformation efficiency in P. oxalicum (a)-(d)The effects of AS concentrations, co-cultivation concentrations of AGL-1 and conidia, and co-cultivation temperature on the transformation efficiency,respectively
Fig.3 Features of Pks and identification of its disruption mutants (a) Main domains of Pks typical for PKS family KS: Ketosynthase; AT: Acyltransferase; DH: Dehydratase; MT: Methyltransferase; KR: Ketoreductase; PP: Phosphopantetheine attachment site for acyl carrier protein or peptidyl carrier protein (b) Diagram for the disruption of Pks L1/L2 and R1/R2: Paired primers used for cloning the 5' and 3' regions of Pks; D1/D2: Paired primers used for PCR detection of disrupted target gene (c) Identifying the disruption mutants by PCR
Fig.4 Changes in fungal growth caused by the disruption of Pks (a) Clononies grown on the PDA with different pH values (b) The relative growth inhibition caused by the addition of Congo red (CR), NaCl, KCl, H2O2 and MnCl2
Fig.5 Pks disruption affected the conidiation of P. oxalicum SCSGAF0023 The bar marked with an asterisk within each group differs significantly from those unmarked (Tukey’s HSD, P<0.05). Error bars: SD from three repeated assays
[1]   Shen B. Polyketide biosynthesis beyond the type I, II, and III polyketide synthase paradigms. Current Opinion in Chemical Biology, 2003,7(2):285-295.
doi: 10.1016/s1367-5931(03)00020-6 pmid: 12714063
[2]   荣辉, 黄惠琴, 鲍时翔. 异源生物合成聚酮化合物的研究进展. 天然产物研究与开发, 2007,19(6):1097-1100.
[2]   Rong H, Huang H Q, Bao S X. Research progresses on biosynthesizing polyketides in heterologous hosts. Natural Product Research and Development 2007,19(6):1097-1100.
[3]   Watanabe A, Ebizuka Y. Unprecedented mechanism of chain length determination in fungal aromatic polyketide synthases. Chemistry & Biology, 2004,11(8):1101-1106.
doi: 10.1016/j.chembiol.2004.05.015 pmid: 15324811
[4]   Boettger D, Bergmann H, Kuehn B, et al. Evolutionary imprint of catalytic domains in fungal PKS-NRPS hybrids. ChemBioChem, 2012,13(16):2363-2373.
doi: 10.1002/cbic.201200449 pmid: 23023987
[5]   Hu Y, Hao X, Lou J, et al. A PKS gene, pks-1, is involved in chaetoglobosin biosynthesis, pigmentation and sporulation in Chaertomium globosum. Science China Life Sciences, 2012,55(12):1100-1108.
pmid: 23233225
[6]   Woo P C Y, Lam C, Tam E W T, et al. First discovery of two polyketide synthase genes for mitorubrinic acid and mitorubrinol yellow pigment biosynthesis and implication in virulence of Penicillium marneffei. PLoS Neglected Tropical Diseases, 2012,6(10):e1871.
pmid: 23094121
[7]   Feng P, Shang Y, Cen K, et al. Fungal biosynthesis of the bibenzoquinone oosporein to evade insect immunity. Proceeding of the National Academy of Sciences of the United States of America, 2015,112(36):11365-11370.
[8]   Chen Y, Feng P, Shang Y, et al. Biosynthesis of non-melanin pigment by a divergent polyketide synthase in Metarhizium robertsii. Fungal Genentics and Biology, 2015,81:142-149.
[9]   Sun Y, He F, Liu K, et al. Cytotoxic dihydrothiophene-condensed chromones from marine-derived fungus Penicillium oxalicum SCSGAF0023. Planta Medica, 2013,79(15):1474-1479.
doi: 10.1055/s-0033-1350805 pmid: 24037588
[10]   Bao J, Sun Y, Zhang X, et al. Antifouling and antibacterial polyketides from marine gorgonian coral-associated fungus Penicillium sp. SCSGAF0023. The Journal of Antibiotics, 66(4):219-223.
doi: 10.1038/ja.2012.110 pmid: 23232928
[11]   Bao J, Luo J, Lu X, et al. Dihydrothiophene-condensed chromone from a marine-derived fungus Penicillium oxalicum and their structure-bioactivity relationship. Bioorganic & Medicinal Chemistry Letters, 2014,24(11):2433-2436.
pmid: 24767845
[12]   Bao J, Zhang X, Dong J, et al. Cyclopentane-condensed chromones from gorgonian-associated fungus Penicillium oxalicum. Chemistry Letters, 2014,43(5):837-839.
[13]   Wang J, Wang Q L, Nong X H, et al. Oxalicumone A, a new dihydrothiophene-condensed sulfur chromone induces apoptosis in leukemia cells through endoplasmic reticulum stress pathway. European Journal of Pharmacology, 2016,783:47-55.
doi: 10.1016/j.ejphar.2016.04.056 pmid: 27132813
[14]   乔建军, 刘伟, 马彦, 等. 根癌农杆菌介导的尿嘧啶缺陷烟曲霉转化是基因敲除的有效方法. 北京大学学报(医学版), 2008,40(3):330-333.
[14]   Qiao J J, Liu W, Ma Y, et al. Agrobacterium tumefaciens-mediated transformation of uracil auxotroph Aspergillus fumigatus is an efficient method for target gene knock out. Journal of Peking University (Medical Edition), 2008,40(3):330-333.
[15]   朱思远, 徐岩, 喻晓蔚. 农杆菌介导转化黑曲霉条件优化及脂肪酶表达. 食品与生物技术学报, 2020,39(5):51-58.
[15]   Zhu S Y, Xu Y, Yu X W. Optimization of Agrobacterium tumefaciens-mediated transformation of Aspergillus niger and expression of lipase. Journal of Food Science and Biotechnology, 2020,39(5):51-58.
[16]   Bundock P, Dulk R A, Beijersbergen A, et al. Trans-kingdom T-DNA transfer from Agrobacterium tumefaciens to Saccharomyces cerevisiae. The EMBO Journal, 1995,14(13):3206-3214.
pmid: 7621833
[17]   Wang J, Zhou G, Ying S H, et al. Adenylate cyclase orthologues in two filamentous entomopathogens contribute differentially to growth, conidiation, pathogenicity and multi-stress responses. Fungal Biology, 2014,118(4):422-431.
pmid: 24742837
[18]   李鑫垒, 李昕, 曹存巍. 农杆菌介导的马尔尼菲青霉基因转化技术的建立及优化. 中国真菌学杂志, 2015,10(2):88-91.
[18]   Li X L, Li X, Cao C W. To establish and optimize the genetic transformation technology of Penicillium marneffei by Agrobacterium tumefaciens-mediated transformation. Chinese Journal of Mycology, 2015,10(2):88-91.
[19]   朱咏华, 吴康, 郑芒, 等. 根癌农杆菌介导的丝状真菌简青霉遗传转化的研究. 湖南大学学报(自然科学版), 2010,37(10):77-81.
[19]   Zhu Y H, Wu K, Zheng M, et al. Agrobacterium tumefaciens-mediated transformation of the Penicillium simplicissimum. Journal of Hunan University (Natural Science), 2010,37(10):77-81.
[20]   赵骏飞, 王冠, 吴宝峰, 等. 基于土壤农杆菌转化法高效构建高产产黄青霉tps1tps2敲除菌株. 中国医药工业杂志, 2017,48(9):1293-1301.
[20]   Zhao J F, Wang G, Wu B F, et al. Efficient knock-out of tpsa and tps2 genes in Penicillium chrysogenum using Agrobacterium-mediated transformation method. Chinese Journal of Pharmaceuticals, 2017,48(9):1293-1301.
[21]   Fang W, Zhang Y J, Yang X Y, et al. Agrobacterium tumefaciens-mediated transformation of Beauveria bassiana using an herbicide resistance gene as a selection marker. Journal of Invertebrate Pathology, 2004,85(1):18-24.
pmid: 14992856
[22]   Wang J, Ying S, Hu Y, et al. Vital role for the J-domain protein Mdj1 in asexual development multiple stress tolerance, and virulence of Beauveria bassiana. Applied Microbiology and Biotechnology, 2017,101(1):185-195.
[23]   Covert S F, Kapoor P, Lee M, et al. Agrobacterium tumefaciens-mediated transformation of Fusarium circinatum. Mycological Research, 2001,105(3):259-264.
[24]   Jiang H, Liu G, Chi Z, et al. Both a PKS and a PPTase are involved in melanin biosynthesis and regulation of Aureobasidium melanogenum XJ5-1 isolated from the Taklimakan desert. Gene, 2017,602:8-15.
doi: 10.1016/j.gene.2016.11.020 pmid: 27845206
[25]   Fatema U, Broberg A, Jensen D F, et al. Functional analysis of polyketide synthase genes in the biocontrol fungus Clonostachys rosea. Scientific Reports, 2018,8(1):15009.
pmid: 30301915
[26]   Noar R D, Thomas E, Xie D, et al. A polyketide synthase gene cluster associated with the sexual reproductive cycle of the banana pathogen, Pseudocercospora fijiensis. PLoS One, 2019,14(7):e0220319.
pmid: 31344104
[27]   Calvo A M, Wilson R A, Bok J W, et al. Relationship between secondary metabolism and fungal development. Microbiology and Molecular Biology Reviews, 2002,66(3):447-459.
doi: 10.1128/mmbr.66.3.447-459.2002 pmid: 12208999
[28]   Hoff B, Kamerewerd J, Sigl C, et al. Two components of a velvet-like complex control hyphal morphogenesis, conidiophore development, and penicillin biosynthesis in Penicillium chrysogenum. Eukaryotic Cell, 2010,9(8):1236-1250.
doi: 10.1128/EC.00077-10 pmid: 20543063
[29]   Kawamura C, Tsujimoto T, Tsuge T. Targeted disruption of a melanin biosynthesis gene affects conidial development and UV tolerance in the Japanese pear pathotype of Alternaria alternata. Molecular Plant-Microbe Interactions 1999,12(1):59-63.
[30]   Schimmel T G, Coffman A D, Parsons S J. Effect of bytyrolactone I on the producing fungus, Aspergillus terreus. Applied and Environmental Microbiology 1998,64(10):3707-3712.
pmid: 9758788
[1] . ADVANCES IN THE ISOLATION METHODS OF FUNGAL POLYKETIDE SYNTHASE GENES[J]. China Biotechnology, 2006, 26(07): 90-93.