Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2020, Vol. 40 Issue (6): 100-105    DOI: 10.13523/j.cb.2001053
    
Research Progress on Degradation of Lignocellulosic Biomass by Screening Microorganisms
ZHANG Ye,WANG Ji-ping(),SU Tian-ming,HE Tie-guang,WANG Jin,ZENG Xiang-yang
Agricultural Resource and Environment Research Institute, Guangxi Academy of Agricultural Sciences, Nanning, Guangxi 530007, China
Download: HTML   PDF(413KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Lignocellulosic resources are abundant renewable resources in nature, and the degradation of lignocellulosic by microorganisms is an important strategy. Based on the study of screening methods and research strategies of lignocellulosic degradation microorganisms all around the world, the advantages, characteristics and application value of lignocellulose degradation by microorganism are summarized and analyzed from single strain, microbial consortium and omics technology: single strain is easy to cultivate but lack of strong degradation ability. Microbial consortium is good at lignocellulose degradation but has poor subculture stability. The omics technology can better explain the mechanism of microbial degradation of lignocellulose, and provide good guidance for screening lignocellulose degradation microorganisms. The strategy of synthetic biology is proposed for screening the Lignocellulose degrading microorganisms, in order to provide some reference for screening the microorganisms which can degrade lignocellulose efficiently.



Key wordsSingle strain      Microbial consortium      Degradation of lignocellulose      Omics technology     
Received: 17 January 2020      Published: 23 June 2020
ZTFLH:  Q819  
Corresponding Authors: Ji-ping WANG     E-mail: jpwang0110@163.com
Cite this article:

ZHANG Ye,WANG Ji-ping,SU Tian-ming,HE Tie-guang,WANG Jin,ZENG Xiang-yang. Research Progress on Degradation of Lignocellulosic Biomass by Screening Microorganisms. China Biotechnology, 2020, 40(6): 100-105.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.2001053     OR     https://manu60.magtech.com.cn/biotech/Y2020/V40/I6/100

[1]   Klemm D, Heublein B, Fink H P , et al. Cellulose: fascinating biopolymer and sustainable raw material. Angew Chem Int Ed Engl, 2005,44(22):3358-3393.
pmid: 15861454
[2]   Ramezani N, Sain M . Non-catalytic green solvent lignin isolation process from wheat straw and the structural analysis. Renewable Energy, 2019,140:292-303.
doi: 10.1016/j.renene.2019.03.026
[3]   谢光辉, 韩东倩, 王晓玉 , 等. 中国禾谷类大田作物收获指数和秸秆系数. 中国农业大学学报. 2011,16(1):1-8.
[3]   Xie G H, Han D Q, Wang X Y , et al. Harvest index and residue factor of cereal crops in China. Journal of China Agricultural University, 2011,16(1):1-8.
[4]   Somerville C . Toward a systems approach to understanding plant cell walls. Science, 2004,306(5705):2206-2211.
pmid: 15618507
[5]   马泽林, 刘家亨, 黄序 , 等. 微生物利用木质纤维素的研究进展. 中国生物工程杂志, 2017,37(6):124-133.
[5]   Ma Z L, Liu J H, Huang X , et al. Research progress on utilization of lignocellulosic biomass by microorganisms. China Biotechnology, 2017,37(6):124-133.
[6]   Patel A K, Singhania R R, Sim S J , et al. Thermostable cellulases: Current status and perspectives. Bioresource Technology, 2019,279:385-392.
pmid: 30685132
[7]   Rosgaard L, Pedersen S, Cherry J R , et al. Efficiency of new fungal cellulase systems in boosting enzymatic degradation of barley straw lignocellulose. Biotechnology Progress, 2006,22(2):493-498.
pmid: 16599567
[8]   Shen F, Zhong B, Wang Y , et al. Cellulolytic microflora pretreatment increases the efficiency of anaerobic co-digestion of rice straw and pig manure. BioEnergy Research, 2019,12(3):703-713.
[9]   Lu W, Wang H, Yang S , et al. Isolation and characterization of mesophilic cellulose-degrading bacteria from flower stalks-vegetable waste co-composting system. The Journal of General and Applied Microbiology, 2005,51(6):353-360.
[10]   Dar M A, Shaikh A A, Pawar K D , et al. Exploring the gut of Helicoverpa armigera for cellulose degrading bacteria and evaluation of a potential strain for lignocellulosic biomass deconstruction. Process Biochemistry, 2018,73:142-153.
[11]   Lazuka A, Auer L, O Donohue M , et al. Anaerobic lignocellulolytic microbial consortium derived from termite gut: enrichment, lignocellulose degradation and community dynamics. Biotechnology for Biofuels, 2018,11(1):284-298.
[12]   de Lima Brossi M J, Jiménez D J, Cortes-Tolalpa L , et al. Soil-derived Mmcrobial consortia enriched with different plant biomass reveal distinct players acting in lignocellulose degradation. Microbial Ecology, 2016,71(3):616-627.
[13]   Shakarami M H, Mohammadabadi T, Motamedi H , et al. Isolation and identification of cellulolytic bacteria from gastrointestinal tract of Arabian horse and investigation of their effect on the nutritional value of wheat straw. Journal of Applied Microbiology, 2019,127(2):344-353.
[14]   Cheng Y, Wang Y, Li Y , et al. Progressive colonization of bacteria and degradation of rice straw in the rumen by illumina sequencing. Frontiers in Microbiology, 2017,8:1-10.
[15]   许从峰, 艾士奇, 申贵男 , 等. 木质纤维素的微生物降解. 生物工程学报, 2019,35(11):2081-2091.
pmid: 31814356
[15]   Xu C F, Ai S Q, Shen G N , et al. Microbial degradation of lignocellulose. Chinese Journal of Biotechnology, 2019,35(11):2081-2091.
pmid: 31814356
[16]   Berlemont R, Martiny A C . Phylogenetic distribution of ptential cellulases in bacteria. Applied and Environmental Microbiology, 2013,79(5):1545-1554.
[17]   Su X, Zhang S, Mei R , et al. Resuscitation of viable but non-culturable bacteria to enhance the cellulose-degrading capability of bacterial community in composting. Microbial Biotechnology, 2018,11(3):527-536.
[18]   Datta R, Kelkar A, Baraniya D , et al. Enzymatic degradation of lignin in soil: a review. Sustainability, 2017,9(7):1163.
[19]   Chauhan P S . Role of various bacterial enzymes in complete depolymerization of lignin: a review. Biocatalysis and Agricultural Biotechnology, 2020,23:101498.
[20]   Kamimura N, Sakamoto S, Mitsuda N , et al. Advances in microbial lignin degradation and its applications. Current Opinion in Biotechnology, 2019,56:179-186.
pmid: 30530243
[21]   Fernandez-Fueyo E, Ruiz-Duenas F J, Ferreira P , et al. Comparative genomics of ceriporiopsis subvermispora and phanerochaete chrysosporium provide insight into selective ligninolysis. Proceedings of the National Academy of Sciences, 2012,109(14):5458-5463.
[22]   Sahoo K, Sahoo R K, Gaur M , et al. Cellulolytic thermophilic microorganisms in white biotechnology: a review. Folia Microbiologica, 2019: 1-19.
[23]   Chen C, Yao J, Yang B , et al. Engineer multi-functional cellulase/xylanase/β-glucosidase with improved efficacy to degrade rice straw. Bioresource Technology Reports, 2019,5:170-177.
[24]   Zakzeski J, Bruijnincx P C A, Jongerius A L , et al. The Catalytic valorization of lignin for the production of renewable chemicals. Chemical Reviews, 2010,110(6):3552-3599.
pmid: 20218547
[25]   Wang W, Yan L, Cui Z , et al. Characterization of a microbial consortium capable of degrading lignocellulose. Bioresource Technology, 2011,102(19):9321-9324.
doi: 10.1016/j.biortech.2011.07.065 pmid: 21831630
[26]   崔宗均, 李美丹, 朴哲 , 等. 一组高效稳定纤维素分解菌复合系MC1的筛选及功能. 环境科学, 2002(03):36-39.
[26]   Cui Z J, Li M D, Piao Z , et al. Selection of a composite microbial system MC1 with efficient and stability cellulose degradation bacteria and its function. Environmental Science, 2002(03):36-39.
[27]   Kato S, Haruta S, Cui Z J , et al. Effective cellulose degradation by a mixed-culture system composed of a cellulolytic Clostridium and aerobic non-cellulolytic bacteria. FEMS Microbiology Ecology, 2004,51(1):133-142.
pmid: 16329862
[28]   Yuan X, Ma L, Wen B , et al. Enhancing anaerobic digestion of cotton stalk by pretreatment with a microbial consortium (MC1). Bioresource Technology, 2016,207:293-301.
[29]   Mishra V, Jana A K, Jana M M , et al. Enhancement in multiple lignolytic enzymes production for optimized lignin degradation and selectivity in fungal pretreatment of sweet sorghum bagasse. Bioresource Technology, 2017,236:49-59.
[30]   Yang L, Yuan H, Yang Y , et al. Enhanced lignin degradation in tobacco stalk composting with inoculation of white-rot fungi trametes hirsuta and pleurotus ostreatus. Waste and Biomass Valorization, 2019: 1-11.
pmid: 32421107
[31]   刘晓梅 . 杏鲍菇菌渣纤维素降解菌的筛选、复合菌剂构建及应用. 北京:中国农业科学院, 2015.
[31]   Liu X M . Screening of cellulose-degradation bacteria for pleurotus eryngii spent substrate, construction and application of composite microbial system. Beijing: Chinese Academy of Agricultural Sciences, 2015.
[32]   夏强 . 纤维素降解混合菌剂的构建及降解效能. 哈尔滨:哈尔滨工业大学, 2018.
[32]   Xia Q , Construction of cellulose-degrading compound microbial inoculum and degradation efficiency. Harbin: Harbin Institute of Technology, 2018.
[33]   Hess M, Sczyrba A, Egan R , et al. Metagenomic discovery of biomass-degrading genes and genomes from cow rumen. Science, 2011,331(6016):463-467.
[34]   Wilhelm R C, Singh R, Eltis L D , et al. Bacterial contributions to delignification and lignocellulose degradation in forest soils with metagenomic and quantitative stable isotope probing. ISME J, 2019,13(2):413-429.
pmid: 30258172
[35]   Alessi A M, Bird S M, Oates N C , et al. Defining functional diversity for lignocellulose degradation in a microbial community using multi-omics studies. Biotechnol Biofuels, 2018,11:166.
[36]   Hassa J, Maus I, Off S , et al. Metagenome, metatranscriptome, and metaproteome approaches unraveled compositions and functional relationships of microbial communities residing in biogas plants. Appl Microbiol Biotechnol, 2018,102(12):5045-5063.
[37]   Güllert S, Fischer M A, Turaev D , et al. Deep metagenome and metatranscriptome analyses of microbial communities affiliated with an industrial biogas fermenter, a cow rumen, and elephant feces reveal major differences in carbohydrate hydrolysis strategies. Biotechnology for Biofuels, 2016,9(1):121-140.
[1] LI Yun-cheng, TANG Yue-qin, KIDA Kenji. Application of OMICS Technology in Construction of Saccharomyces cerevisiae Strains for Ethanol Production[J]. China Biotechnology, 2014, 34(2): 118-128.
[2] ZHANG Xiao-yang, LI Yu-dong, WU Xue-chang. Research Progress of "Omics" Technologies and Its Application in Construction of Engineering Strain of Saccharomyces cerevisiae[J]. China Biotechnology, 2011, 31(8): 139-144.