Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2019, Vol. 39 Issue (7): 85-90    DOI: 10.13523/j.cb.20190712
    
Research Progress of Antibody Chip Technology and Its Application in Parasite Research
Jian-da PANG,Yi-ning SONG,Xin-rui WANG,Shu-min SUN()
College of Animal Science and Technology, Inner Mongolia University for Nationalities, Tongliao 028000,China
Download: HTML   PDF(479KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

With the in-depth development of proteomics related technologies, the study of pathogen invasion and host interaction is becoming more and more in-depth, and the high-throughput and large-scale analysis of protein interaction and protein expression patterns is possible. Through the systematic analysis and identification of proteins, it has a high reference value for the occurrence and development of diseases. Antibody chip analysis of proteins with the advantages of micro-integration, large-scale and high-pass quantification, has been widely used in the field of biomedicine. The current research progress of antibody chip technology and its application in parasite research are reviewed. The development process of parasites has its unique life history, and the expression of parasite proteins and excretory and secretory products at different developmental stages are very different. antibody chip technology is applied to proteomics research of parasites to screen specific marker antigens. It is of great significance to explore the growth and development of parasites, colonization invasion, immune escape and immunosuppression, so as to lay a foundation for the early diagnosis and treatment of parasitic diseases and the search for new drug targets. At the same time, it provides a new idea and method for the further study of parasite proteomics.



Key wordsAntibody chip      High throughput      Parasite     
Received: 05 December 2018      Published: 05 August 2019
ZTFLH:  Q819  
Corresponding Authors: Shu-min SUN     E-mail: shums1975@163.com
Cite this article:

Jian-da PANG,Yi-ning SONG,Xin-rui WANG,Shu-min SUN. Research Progress of Antibody Chip Technology and Its Application in Parasite Research. China Biotechnology, 2019, 39(7): 85-90.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20190712     OR     https://manu60.magtech.com.cn/biotech/Y2019/V39/I7/85

[1]   Sun Y, Gallagher-Jones M, Barker C , et al. A benchmarked protein microarray-based platform for the identification of novel low-affinity extracellular protein interactions. Analytical Biochemistry, 2012,424(1-3):45-53.
doi: 10.1016/j.ab.2012.01.034
[2]   Chen Z, Crnkovic T D, Schwenk J M , et al. Current applications of antibody microarrays. Clinical Proteomics, 2018,15(1):7.
[3]   张翠薇, 马跃荣 . 抗体芯片技术应用于慢性肾病研究的进展. 医学综述, 2010,16(14):2156-2159.
[3]   Zhang C W, Ma Y R . Progress in the application of antibody chip technology in the study of chronic kidney disease. Medical Review, 2010,16(14):2156-2159.
[4]   Voshol H, Ehrat M, Traenkle J , et al. Antibody-based proteomics. Febs Journal, 2010,276(23):6871-6879.
[5]   Ellmark P, Ingvarsson J, Carlsson A , et al. Identification of protein expression signatures associated with helicobacter pylori infection and gastric adenocarcinoma using recombinant antibody microarrays. Molecular & Cellular Proteomics, 2006,5(9):1638-1646.
[6]   Matarraz S, Gonzalez M, Jara M , et al. New technologies in cancer. Protein microarrays for biomarker discovery. Clinical & Translational Oncology, 2011,13(3):156-161.
[7]   Dasilva N, Díez P, González-González M , et al. Protein microarrays: technological aspects,applications and intellectual property. Recent Patents on Biotechnology, 2013,7(2):142-152.
doi: 10.2174/18722083113079990007
[8]   Bridget W, Liotta L, Emanuel P . Monitoring proteins and protein networks using reverse phase protein arrays. Disease Markers, 2010,28(4):225-232.
doi: 10.1155/2010/240248
[9]   VanMeter A, Signore M, Pierobon M , et al. Reverse-phase protein microarrays: application to biomarker discovery and translational medicine. Expert Review of Molecular Diagnostics, 2007,7(5):625-633.
doi: 10.1586/14737159.7.5.625
[10]   He W, Liu Z H, Dan K X . Protein microarray technology. Journal of Biochemistry and Biophysics, 2004,7(1):815-822.
[11]   Takulapalli B R, Qiu J, Magee D M , et al. High density diffusion-free nanowell arrays. Journal of Proteome Research, 2012,11(8):4382.
doi: 10.1021/pr300467q
[12]   Glokler J A P . Protein and antibody microarray technology. J Chromatogr B Analyt Technol Biomed Life Sci, 2003,797(1-2):229-240.
doi: 10.1016/j.jchromb.2003.08.034
[13]   Huang R P . Simultaneous detection of multiple proteins with an array-based enzyme-linked immunosorbent assay (ELISA) and enhanced chemiluminescence (ECL). Clinical Chemistry & Laboratory Medicine, 2001,39(3):209-214.
[14]   Vigil A, Davies D H, Felgner P L . Defining the humoral immune response to infectious agents using high-density protein microarrays. Future Microbiology, 2010,5(2):241-251.
doi: 10.2217/fmb.09.127
[15]   Huang W, Whittaker K, Zhang H , et al. Integration of antibody array technology into drug discovery and development. Assay Drug Dev Technologies, 2018,16(2):74-95.
doi: 10.1089/adt.2017.808
[16]   Saxton R A, Sabatini D M . mTOR signaling in growth,metabolism,and disease. Cell, 2017,168(6):960-976.
doi: 10.1016/j.cell.2017.02.004
[17]   Manuel P, Antonio C, Elisabet C P , et al. Discovery and validation of an inflammatory PROtein-driven gastric cancer signature (INPROGAS) using antibody microarray-based oncoproteomics. Oncotarget, 2014,5(7):1942-1954.
[18]   Yang T, Yao H, He G , et al. Effects of lovastatin on MDA-MB-231 breast cancer cells:an antibody microarray analysis. Journal of Cancer, 2016,7(2):192-199.
doi: 10.7150/jca.13414
[19]   Sharivkin R, Walker M D, Soen Y . Functional proteomics screen enables enrichment of distinct cell types from human pancreatic islets. PLoS One, 2015,10(2):e0115100.
doi: 10.1371/journal.pone.0115100
[20]   Toledo R, Bernal M D, Marcilla A . Proteomics of foodborne trematodes. Journal of Proteomics, 2011,74(9):1485-1503.
doi: 10.1016/j.jprot.2011.03.029
[21]   Driguez P, Doolan D L, Molina D M , et al. Protein microarrays for parasite antigen discovery. Methods in Molecular Biology, 2015,1201(1201):221-233.
doi: 10.1007/978-1-4939-1438-8
[22]   Finney O C, Danziger S A, Molina D M , et al. Predicting antidisease immunity using proteome arrays and sera from children naturally exposed to malaria. Molecular & Cellular Proteomics Mcp, 2014,13(10):2646.
[23]   Fan Y T, Wang Y, Ju C , et al. Systematic analysis of natural antibody responses to P.falciparum merozoite antigens by protein arrays. Journal of Proteomics, 2013,78(1):148-158.
doi: 10.1016/j.jprot.2012.11.020
[24]   Doolan D L, Yunxiang M, Berkay U , et al. Profiling humoral immune responses to P.falciparum infection with protein microarrays. Proteomics, 2010,8(22):4680-4694.
[25]   Chen J H, Jung J W, Wang Y , et al. Immunoproteomics profiling of blood stage plasmodium vivax infection by high-throughput screening assays. Journal of Proteome Research, 2010,9(12):6479-6489.
doi: 10.1021/pr100705g
[26]   Driguez P, Doolan D L, Loukas A , et al. Schistosomiasis vaccine discovery using immunomics. Parasites & Vectors, 2010,3(1):4.
[27]   Chen J h, Zhang T, Ju C , et al. An integrated immunoproteomics and bioinformatics approach for the analysis of Schistosoma japonicum tegument proteins. Journal of Proteomics, 2014,98(4):289-299.
doi: 10.1016/j.jprot.2014.01.010
[28]   贾利芳 . 应用免疫蛋白芯片研究细粒棘球蚴病诊断抗原. 北京:中国疾病预防控制中心, 2014.
[28]   Jia L F . Application of immunoprotein microarray to study the diagnostic antigen of echinococcosis granulosa. Beijing:China Center for Disease Control and Prevention, 2014.
[29]   邵军, 王志鑫, 王虎 等. 抗体芯片检测泡型包虫病肝组织凋亡因子的表达. 中国普外基础与临床杂志, 2017,24(4):426-431.
[29]   Shao J, Wang Z X, Wang H , et al. Detection of apoptotic factors in hepatic tissue of echinococcosis by antibody microarray. Chinese Journal of Basic and Clinical Medicine, 2017,24(4):426-431.
[30]   邵军, 王志鑫, 王虎 , 等. 泡型肝包虫病患者血清炎症因子的抗体芯片检测及分析. 胃肠病学和肝病学杂志, 2017,26(5):566-569.
[30]   Shao J, Wang Z X, Wang H , et al. Detection and analysis of serum inflammatory factors in patients with vesicular hepatic echinococcosis. Journal of Gastroenterology and Hepatology, 2017,26(5):566-569.
[1] HE Lin-wei, LIU Zhang-min, FENG Yan, CUI Li. High Throughput Screening Method and Application for L-glutamate Specific Aminotransferase[J]. China Biotechnology, 2017, 37(8): 59-65.
[2] ZHU Yun-peng, WANG Peng, XIA Bo-ran, TANG Yan-ting, WANG Quan. Screening and Inhibition Kinetics of SARS Coronavirus Main Protease Inhibitors[J]. China Biotechnology, 2016, 36(4): 35-42.
[3] TIAN Cong-hui, TANG Yan-ting, WANG Quan, ZHOU Hong-gang. Estabilishment and Application of a Model for Drug Screening Targeting Neprilysin Proteinase[J]. China Biotechnology, 2015, 35(2): 52-58.
[4] ZHANG Ning, PAN Li, NIU Guo-jun, WANG Wen-ming, ZHOU Hong-gang, YANG Cheng. Establishment and Application of a System for Drug Screening Targeting MERS-CoV Main Proteinase[J]. China Biotechnology, 2013, 33(12): 51-56.
[5] DAN Liu, JIANG E-Qin, BAI Yan-Qiu. Establishment of High Throughput Screening System of mGluR5[J]. China Biotechnology, 2010, 30(05): 81-86.
[6] . Establishment of a Cell Based High Throughput Screening Model for Discovering New Agonists of Histamine H3 Receptor[J]. China Biotechnology, 2008, 28(9): 61-67.
[7] . Technologies for Surface Display of Lipase and its Application[J]. China Biotechnology, 2007, 27(9): 97-102.