Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2016, Vol. 36 Issue (9): 87-93    DOI: 10.13523/j.cb.20160911
    
Advances on Regulatory Mechanism of Heat-shock Proteins
HOU Bing-xiao, LIU Shan-na, WANG Bin-bin, ZHU Hong-ji, QIAO Jian-jun
Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, China
Download: HTML   PDF(569KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Heat-shock proteins (HSP) as a self-protection manner of cells are a family of proteins which can be induced by stresses including temperature, pH and osmotic pressure. In the environmental stresses, heat-shock regulators can regulate the expression of HSP at transcriptional level, contributing to restoring or quickly removing the denatured proteins of cells. The regulation of heat-shock regulators could maintain homeostasis and improve stress tolerance. Many studies have shown that heat-shock regulators play a vital role in stress response and tolerance, indicating wide application prospects. The regulatory mechanisms and interactions of six class HSP are outlined, heat-shock regulatory factors HrcA, σB and CtsR are emphasized, which might provide valuable reference information for the construction of heat-shock regulatory networks.



Key wordsσB      Heat-shock protein      CtsR      HrcA     
Received: 22 March 2016      Published: 25 September 2016
ZTFLH:  Q816  
Cite this article:

HOU Bing-xiao, LIU Shan-na, WANG Bin-bin, ZHU Hong-ji, QIAO Jian-jun. Advances on Regulatory Mechanism of Heat-shock Proteins. China Biotechnology, 2016, 36(9): 87-93.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20160911     OR     https://manu60.magtech.com.cn/biotech/Y2016/V36/I9/87

[1] Hartl F U, Bracher A, Hayer-Hartl M. Molecular chaperones in protein folding and proteostasis. Nature, 2011, 475(7356):324-332.
[2] Sghaier H, Ai T L H, Horiike T, et al. Molecular chaperones:proposal of a systematic computer-oriented nomenclature and construction of a centralized database. In Silico Biology, 2004, 4(3):311-322.
[3] Sugimoto S, Sonomoto K. Molecular chaperones in lactic acid bacteria:physiological consequences and biochemical properties. Journal of bioscience and bioengineering, 2008, 106(4):324-336.
[4] Selby K, Lindström M, Somervuo P, et al. Important role of class I heat shock genes hrcA and dnaK in the heat shock response and the response to pH and NaCl stress of group I Clostridium botulinum strain ATCC 3502. Applied and Environmental Microbiology, 2011, 77(9):2823-2830.
[5] Pané-Farré J, Jonas B, Förstner K, et al. The σB regulon in Staphylococcus aureus and its regulation. International Journal of Medical Microbiology, 2006, 296(4):237-258.
[6] Derré I, Rapoport G, Msadek T. CtsR, a novel regulator of stress and heat shock response, controls clp and molecular chaperone gene expression in Gram-positive bacteria. Molecular Microbiology, 1999, 31(1):117-131.
[7] Varmanen P, Ingmer H, Vogensen F K. ctsR of Lactococcus lactis encodes a negative regulator of clp gene expression. Microbiology, 2000, 146(6):1447-1455.
[8] Noone D, Botella E, Butler C, et al. Signal perception by the secretion stress-responsive CssRS two-component system in Bacillus subtilis. Journal of Bacteriology, 2012, 194(7):1800-1814.
[9] Wilson A C, Tan M. Stress response gene regulation in Chlamydia is dependent on HrcA-CIRCE interactions. Journal of Bacteriology, 2004, 186(11):3384-3391.
[10] Chen A L, Wilson A C, Tan M. A Chlamydia-specific C-terminal region of the stress response regulator HrcA modulates its repressor activity. Journal of Bacteriology, 2011, 193(23):6733-6741.
[11] Baird P N, Hall L M C, Coates A R M. Cloning and sequence analysis of the 10kDa antigen gene of Mycobacterium tuberculosis. Microbiology, 1989, 135(4):931-939.
[12] Narberhaus F, Bahl H. Cloning, sequencing, and molecular analysis of the groESL operon of Clostridium acetobutylicum. Journal of Bacteriology, 1992, 174(10):3282-3289.
[13] Wetzstein M, Völker U, Dedio J, et al. Cloning, sequencing, and molecular analysis of the dnaK locus from Bacillus subtilis. Journal of Bacteriology, 1992, 174(10):3300-3310.
[14] Segal G, Ron E Z. Regulation and organization of the groE and dnaK operons in Eubacteria. FEMS Microbiology Letters, 1996, 138(1):1-10.
[15] Zuber U, Schumann W. CIRCE, a novel heat shock element involved in regulation of heat shock operon dnaK of Bacillus subtilis. Journal of Bacteriology, 1994, 176(5):1359-1363.
[16] Narberhaus F. Negative regulation of bacterial heat shock genes. Molecular Microbiology, 1999, 31(1):1-8.
[17] Inoue M, Mitarai N, Trusina A. Circuit architecture explains functional similarity of bacterial heat shock responses. Physical biology, 2012, 9(6):066003.
[18] Hu Y, Oliver H F, Raengpradub S, et al. Transcriptomic and phenotypic analyses suggest a network between the transcriptional regulators HrcA and σB in Listeria monocytogenes. Applied and Environmental Microbiology, 2007, 73(24):7981-7991.
[19] Bayles D O, Annous B A, Wilkinson B J. Cold stress proteins induced in Listeria monocytogenes in response to temperature downshock and growth at low temperatures. Applied and Environmental Microbiology, 1996, 62(3):1116-1119.
[20] Uppal S, Shetty D M, Jawali N. Cyclic AMP receptor protein regulates cspD, a bacterial toxin gene, in Escherichia coli. Journal of Bacteriology, 2014, 196(8):1569-1577.
[21] Cotter P D, Gahan C G M, Hill C. A glutamate decarboxylase system protects Listeria monocytogenes in gastric fluid. Molecular Microbiology, 2001, 40(2):465-475.
[22] Duché O, Trémoulet F, Glaser P, et al. Salt stress proteins induced in Listeria monocytogenes. Applied and Environmental Microbiology, 2002, 68(4):1491-1498.
[23] Van Bokhorst-van de Veen H, Bongers R S, Wels M, et al. Transcriptome signatures of class I and Ⅲ stress response deregulation in Lactobacillus plantarum reveal pleiotropic adaptation. Microbial Cell Factories, 2013, 12(1):1.
[24] van Schaik W, Abee T. The role of σ B in the stress response of Gram-positive bacteria-targets for food preservation and safety. Current Opinion in Biotechnology, 2005, 16(2):218-224.
[25] Fouet A, Namy O, Lambert G. Characterization of the operon encoding the alternative σB factor from Bacillus anthracis and its role in virulence. Journal of Bacteriology, 2000, 182(18):5036-5045.
[26] Utratna M, Cosgrave E, Baustian C, et al. Effects of growth phase and temperature on activity within a Listeria monocytogenes population:evidence for rsbV-independent activation of at refrigeration temperatures. BioMed Research International, 2013,2013(17):641647.
[27] Kazmierczak M J, Wiedmann M, Boor K J. Alternative sigma factors and their roles in bacterial virulence. Microbiology and Molecular Biology Reviews, 2005, 69(4):527-543.
[28] van Schaik W, Tempelaars M H, Zwietering M H, et al. Analysis of the role of RsbV, RsbW, and RsbY in regulating σB activity in Bacillus cereus. Journal of Bacteriology, 2005, 187(16):5846-5851.
[29] Sonenshein A L, Hoch J A, Losick R. Bacillus subtilis and its closest relatives:from genes to cells. Nature, 2002,415(6869):263-264.
[30] van Schaik W, Tempelaars M H, Wouters J A, et al. The alternative sigma factor σB of Bacillus cereus:response to stress and role in heat adaptation. Journal of bacteriology, 2004, 186(2):316-325.
[31] McGann P, Wiedmann M, Boor K J. The alternative sigma factor σB and the virulence gene regulator PrfA both regulate transcription of Listeria monocytogenes internalins. Applied and Environmental Microbiology, 2007, 73(9):2919-2930.
[32] 杨丽红,孟庆玲,乔军. SigmaB基因缺失对单核细胞增生李斯特菌致病性和环境应激能力的影响. 石河子大学, 动物科技学院,2013. Yang L H,Meng Q L,Qiao J.Effect of SigmaB gene deletion on virulence of Listeria monocytogene. Shihezi University,College of Animal Science a nd Technology,2013.
[33] Krüger E, Hecker M. The first gene of the Bacillus subtilis clpC operon, ctsR, encodes a negative regulator of its own operon and other class Ⅲ heat shock genes. Journal of Bacteriology, 1998, 180(24):6681-6688.
[34] Derré I, Rapoport G, Msadek T. The CtsR regulator of stress response is active as a dimer and specifically degraded in vivo at 37℃. Molecular Microbiology, 2000, 38(2):335-347.
[35] Chastanet A, Fert J, Msadek T. Comparative genomics reveal novel heat shock regulatory mechanisms in Staphylococcus aureus and other Gram-positive bacteria. Molecular Microbiology, 2003, 47(4):1061-1073.
[36] Fiocco D, Collins M, Muscariello L, et al. The Lactobacillus plantarum ftsH gene is a novel member of the CtsR stress response regulon. Journal of Bacteriology, 2009, 191(5):1688-1694.
[37] Russo P, De La Luz Mohedano M, Capozzi V, et al. Comparative proteomic analysis of Lactobacillus plantarum WCFS1 and ΔctsR mutant strains under physiological and heat stress conditions. International Journal of Molecular Sciences, 2012, 13(9):10680-10696.
[38] Fuhrmann J, Schmidt A, Spiess S, et al. McsB is a protein arginine kinase that phosphorylates and inhibits the heat-shock regulator CtsR. Science, 2009, 324(5932):1323-1327.
[39] Elsholz A K W, Gerth U, Hecker M. Regulation of CtsR activity in low GC, Gram+ bacteria. Advances in Microbial Physiology, 2010, 57:119-144.
[40] Fleury B, Kelley W L, Lew D, et al. Transcriptomic and metabolic responses of Staphylococcus aureus exposed to supra-physiological temperatures. BMC Microbiology, 2009, 9(1):1.
[41] Frees D, Chastanet A, Qazi S, et al. Clp ATPases are required for stress tolerance, intracellular replication and biofilm formation in Staphylococcus aureus. Molecular Microbiology, 2004, 54(5):1445-1462.
[42] Miethke M, Hecker M, Gerth U. Involvement of Bacillus subtilis ClpE in CtsR degradation and protein quality control. Journal of Bacteriology, 2006, 188(13):4610-4619.
[43] Krüger E, Zühlke D, Witt E, et al. Clp-mediated proteolysis in Gram-positive bacteria is autoregulated by the stability of a repressor. The EMBO Journal, 2001, 20(4):852-863.
[44] Kirstein J, Zühlke D, Gerth U, et al. A tyrosine kinase and its activator control the activity of the CtsR heat shock repressor in B. subtilis. The EMBO Journal, 2005, 24(19):3435-3445.
[45] Elsholz A K W, Michalik S, Zühlke D, et al. CtsR, the Gram-positive master regulator of protein quality control, feels the heat. The EMBO Journal, 2010, 29(21):3621-3629.
[46] Elsholz A K W, Hempel K, Pöther D C, et al. CtsR inactivation during thiol-specific stress in low GC, Gram+ bacteria. Molecular Microbiology, 2011, 79(3):772-785.
[47] Wozniak D J, Tiwari K B, Soufan R, et al. The mcsB gene of the clpC operon is required for stress tolerance and virulence in Staphylococcus aureus. Microbiology, 2012, 158(10):2568-2576.
[48] Elsholz A K W, Michalik S, Zühlke D, et al. CtsR, the Gram-positive master regulator of protein quality control, feels the heat. The EMBO Journal, 2010, 29(21):3621-3629.
[49] Hyyryläinen H L, Bolhuis A, Darmon E, et al. A novel two-component regulatory system in Bacillus subtilis for the survival of severe secretion stress. Molecular Microbiology, 2001, 41(5):1159-1172.
[50] Hyyryläinen H L, Pietiäinen M, Lunden T, et al. The density of negative charge in the cell wall influences two-component signal transduction in Bacillus subtilis. Microbiology, 2007, 153(7):2126-2136.
[51] Chaturongakul S, Boor K J. RsbT and RsbV contribute to σB-dependent survival under environmental, energy, and intracellular stress conditions in Listeria monocytogenes. Applied and Environmental Microbiology, 2004, 70(9):5349-5356.
[52] Gaillot O, Pellegrini E, Bregenholt S, et al. The ClpP serine protease is essential for the intracellular parasitism and virulence of Listeria monocytogenes. Molecular Microbiology, 2000, 35(6):1286-1294.
[53] Chaturongakul S, Boor K J. σB activation under environmental and energy stress conditions in Listeria monocytogenes. Applied and Environmental Microbiology, 2006, 72(8):5197-5203.
[54] Chastanet A, Prudhomme M, Claverys J P, et al. Regulation of Streptococcus pneumoniae clp genes and their role in competence development and stress survival. Journal of Bacteriology, 2001, 183(24):7295-7307.
[55] Hu Y, Raengpradub S, Schwab U, et al. Phenotypic and transcriptomic analyses demonstrate interactions between the transcriptional regulators CtsR and Sigma B in Listeria monocytogenes. Applied and Environmental Microbiology, 2007, 73(24):7967-7980.
[56] Ehira S, Teramoto H, Inui M, et al. Regulation of Corynebacterium glutamicum heat shock response by the extracytoplasmic-function sigma factor SigH and transcriptional regulators HspR and HrcA. Journal of Bacteriology, 2009, 191(9):2964-2972.
[57] Wang Q, Venkataramanan K P, Huang H, et al. Transcription factors and genetic circuits orchestrating the complex, multilayered response of Clostridium acetobutylicum to butanol and butyrate stress. BMC Systems Biology, 2013, 7(1):1.

No related articles found!