Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2013, Vol. 33 Issue (10): 103-110    DOI:
    
Construction of Fingerprinting Using SRAP and SSR Markers for Maize Inbred Lines by Space Flight
ZHANG Cai-bo, ZHANG Yan-hua, LIU He-yang, WANG Han-yu, ZENG Wen-bing, RONG Ting-zhao, CAO Mo-ju
Key Laboratory of Crop Genetic Resource and Improvement, Ministry of Education, Key Laboratory of Biology and Genetic Improvement of Maize in Southwest Region, Ministry of Agriculture, Maize Research Institute, Sichuan Agricultural University, Chengdu 611130, China
Download: HTML   PDF(1090KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  In order to detect the variation characteristics at molecular level on maize inbred line by space flight, four maize inbred lines S37, 21-ES, A318 and SCML104 were selected as experimental materials, and genetic polymorphism analysis was conducted with four maize inbred lines using two molecular markers SRAP and SSR. The results showed that the large genetic differences were appeared between S37 and A318, SRAP and SSR markers detected polymorphism rate were 19.1% and 19.8% respectively; for inbred lines 21-ES and SCML104, SRAP and SSR markers detected polymorphism rate were 9.0% and 5.7% respectively. SSR polymorphisms primer between S37 and A318 had distribution in maize 10 chromosomes, and part of site presented multiple polymorphisms primers assemble. For 21-ES and SCML104, polymorphisms primers were mainly distributed in the maize 5, 6 and 7 chromosomes. The above analysis showed that genetic differences were real existent between maize inbred line of the space mutation breeding and original inbred line, and proved space flight process can actually lead to genetic materials changes, space mutation is a new effective way for maize inbred line breeding.

Key wordsMaize inbred line      Space flight      SSR      SRAP      DNA fingerprinting     
Received: 05 June 2013      Published: 25 October 2013
ZTFLH:  Q754  
Cite this article:

ZHANG Cai-bo, ZHANG Yan-hua, LIU He-yang, WANG Han-yu, ZENG Wen-bing, RONG Ting-zhao, CAO Mo-ju. Construction of Fingerprinting Using SRAP and SSR Markers for Maize Inbred Lines by Space Flight. China Biotechnology, 2013, 33(10): 103-110.

URL:

https://manu60.magtech.com.cn/biotech/     OR     https://manu60.magtech.com.cn/biotech/Y2013/V33/I10/103

[1] 荣廷昭,李晚忱,潘光堂. 新世纪初发展我国玉米遗传育种科学技术的思考. 玉米科学,2003, 11(suppl-2):42-53. Rong T Z, Li W C, Pan G T. Suggestion on development of science and technology in maize genetics and breeding at the beginning of 21st century. Journal of Maize Sciences, 2003, 11(suppl-2):42-53.
[2] Yang P Z, Zhong G X, Xie H, et al. Research on background and utilization of germplasm resources in Maize. Agricultural Science & Technology, 2011,12(10): 1464-1467.
[3] 刘纪麟. 玉米育种学.北京:中国农业出版社,2002.201-220. Liu J L. Maize Breeding. Beijing: China Agric Press, 2002.201-220.
[4] 温贤芳,张龙,戴维序,等.天地结合开展我国空间诱变育种研究.核农学报,2004,18(4): 241-246. Wen X F,Zhang L,Dai W X,et al. Study of space mutation breeding in China. Acta Agriculturae Nucleatae Sinica, 2004, 18(4):241-246.
[5] 刘录祥,郭会君,赵林姝,等.我国作物航天育种20年的基本成就与展望.核农学报,2007,21(6): 589-592. Liu L X,Guo H J,Zhao L S,et al. Achievements in the past twenty years and perspective outlook of crop space breeding in China. Journal of Nuclear Agricultural Sciences, 2007, 21(6):589-592.
[6] 刘录祥,赵林姝,郭会君. 作物航天育种研究现状与展望. 中国农业科技导报, 2007, 9(2): 26-29. Liu L X,Zhao L S,Guo H J. Current status and perspective outlook of space induced mutation breeding in crop plants. Review of China Agricultural Science and Technology, 2007, 9(2):26-29.
[7] Yuan J, Wang F, Buhaliqiemu Z Y, et al. Analysis on agronomic and economic trait of mutation progeny of Oryza sativa by space mutation. Acta Agriculturae Boreali-Occidentalis Sinica, 2012, 3: 019.
[8] 王忠华. DNA指纹图谱技术及其在作物品种资源中的应用. 分子植物育种,2006,4(3):425-430. Wang Z H. DNA fingerprinting technology and its application in crop germplasm resources. Molecular Plant Breeding, 2006, 4(3):425-430.
[9] 李晓辉,李新海,高文伟,等. 玉米杂交种DNA指纹图谱及其在亲子鉴定中的应用. 作物学报,2005,31(3):386-391. Li X H,Li X H,Gao W W,et al. Establishment of DNA fingerprinting database of maize hybrids and its application in parentage identification. Acta Agronomica Sinica, 2005, 31(3):386-391.
[10] 梁明山,曾宇,周翔,等. 遗传标记及其在作物品种鉴定中的应用. 植物学通报,2001,18(3):257-265. Liang M S,Zeng Y,Zhou X,et al. Genetic markers and their applications in identifying crop cultivars. Chinese Bulletin of Botany, 2001, 18(3):257-265.
[11] 李晓辉,李新海,李文华,等. SSR 标记技术在玉米杂交种种子纯度测定中的应用. 作物学报,2003,29(1):63-68. Li X H,Li X H,Li W H,et al. Application of SSR markers in hybrid seed purity test of maize. Acta Agronomica Sinica, 2003, 29(1):63-68.
[12] 李媛媛,沈金雄,王同华,等. 利用SRAP、SSR 和AFLP 标记构建甘蓝型油菜遗传连锁图谱. 中国农业科学,2007,40(6):1118-1126. Li Y Y,Shen J X,Wang T H,et al. Construction of a linkage map using SRAP, SSR and AFLP markers in Brassica napus L.. Scientia Agricultura Sinica, 2007, 40(6):1118-1126.
[13] 王华忠,吴则东,王晓武,等. 利用SRAP 与SSR 标记分析不同类型甜菜的遗传多样性. 作物学报,2008,34(1):37-46. Wang H Z,Wu Z D,Wang X W,et al. Analysis of the genetic diversity in different types of sugar beets by SRAP and SSR markers. Acta Agronomica Sinica, 2008, 34(1):37-46.
[14] Sun B, Fu C, Yang C, et al. Genetic diversity of wild Soybeans from some regions of southern China based on SSR and SRAP markers. American Journal of Plant Sciences, 2013, 4: 257-268.
[15] Li G, Quiros C F. Sequence-related amplified polymorphism (SRAP), a new marker system based on a simple PCR reaction: its application to mapping and gene tagging in Brassica. Theoretical and Applied Genetics, 2001,103:455-461.
[16] 柳李旺, 龚义勤, 黄 浩, 等. 新型分子标记——SRAP 与TRAP 及其应用. 遗传,2004,26(5):777-781. Liu L W, Gong Y Q, Huang H, et al. Novel molecular marker systems— SRAP and TRAP and their application. Hereditas, 2004, 26(5):777-781.
[17] Sven Bode Andersen. SRAP Molecular Marker Technology in Plant Science. in: Plant Breeding from Laboratories to Field. Copenhargan: Copenhargan University, 2013.23-43.
[18] 张安世,徐九文,辛长永,等. 河南省水稻中晚粳新品系遗传多样性的SRAP分析. 中国农学通报,2010,26(2):50-54. Zhang A S,Xu J W,Xin C Y,et al. Analysis of genetic diversity of new Middle-Late lines of Japonica rice in Henan province by SRAP. Chinese Agricultural Science Bulletin, 2010, 26(2):50-54.
[19] 盖树鹏,盖伟玲,黄进勇. SSR 与SRAP 标记在玉米品种鉴定中的比较研究. 植物遗传资源学报,2011,12(3):468-472. Gai S P,Gai W L,Huang J Y. Comparison of SSR and SRAP marker for varieties identification in Maize(Zea mays L.). Journal of Plant Genetic Resources, 2011, 12(3):468-472.
[20] 马秀杰,王冠明,韩烈保. 不同产地麦冬遗传多样性的SRAP分析. 草业学报,2012,29(11):1686-1691. Ma X J,Wang G M,Han L B. Genetic diversity in lilyturf germplasm detected by SRAP markers. Pratacultural Science, 2012, 29(11):1686-1691.
[21] Filiz E. Genetic diversity analysis of CIMMYT bread wheat (Triticum aestivum L.) lines by SRAP markers. Electronic Journal of Plant Breeding, 2012, 3(4): 956-963.
[22] 祁建民,梁景霞,陈美霞,等. 应用ISSR 与SRAP 分析烟草种质资源遗传多样性及遗传演化关系. 作物学报,2012,38(8):1425-1434. Qi J M,Liang J X,Chen M X,et al. Genetic diversity and evolutionary analysis of Tobacco (Nicotiana tabacum L.) germplasm resources based on ISSR and SRAP markers. Acta Agronomica Sinica, 2012, 38(8):1425-1434.
[23] Zhang H, Wang M Q, Wang H Z. SRAP polymorphism of space-flight mutation sugarbeet SP3 generation breeding material. Biomedical Engineering and Biotechnology (iCBEB), 2012 International conference on 28-30 may, 1696-1699.
[24] 刘仁虎,孟金陵. MapDraw,在Excel 中绘制遗传连锁图. 遗传,2003,25(3):317-321. Liu R H,Meng J L. Map Draw: a Microsoft Excel macro for drawing genetic linkage maps based on given genetic linkage data. Hereditas, 2003, 25(3):317-321.
[25] 覃鸿妮,蔡一林,杨春蓉,等. 玉米诱变系的SSR 遗传变异分析. 核农学报, 2008,22(6):750-755. Qin H N,Cai Y L,Yang C R,et al. Genetic variation of maize (Zea mays L.) mutants based on SSR analysis. Journal of Nuclear Agricultural Sciences, 2008, 22(6):750-755.
[26] 乔晓,石海春,柯永培,等. 玉米航天诱变SP3 株系的遗传变异分析. 玉米科学,2012,20(3):15-21. Qiao X,Shi H C,Ke Y P,et al. Genetic variation of maize mutants by spaceflight based on SSR analysis. Journal of Maize Sciences, 2012, 20(3):15-21.
[27] 杜文平,余桂容,宋军,等. 卫星搭载后玉米诱变系的SRAP 分析. 核农学报,2011,25(5):0839-0843. Du W P,Yu G R,Song J,et al. SRAP analysis for space induced mutant line of maize (Zea mays L.). Journal of Nuclear Agricultural Sciences, 2011, 25(5):0839-0843.