Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2016, Vol. 36 Issue (3): 38-42    DOI: DOI:10.13523/j.cb.20160306
    
Isolation and Characterization of Mucor circinelloides pyrG Negative Mutant Strain
ZHANG Ying-tong, CHEN Hai-qin, SONG Yuan-da, ZHANG Hao, CHEN Yong-quan, CHEN Wei
State Key Laboratory of Food Science and Technology, School of Food Science and Technology, Jiangnan University, Wuxi 214122, China
Download: HTML   PDF(608KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

To generate genetic selective marker for constructing super-producing lycopene strains, chemical mutagenesis was applied in mutagenizing Mucor circinelloides MU616. Five uracil auxotroph strains of Mucor circcinelloides were isolated with nitrosoguanidine and selected by resistance to 5-fluoroorotic acid, and these mutants were unable to grow in the minimal medium even after 5 days' culture. Plasmid pEPM1 which harbors the pyrG gene encoding orotidine-5'-monophosphate decarboxylase in Mucor circinelloides were used to transformed the representative uracil auxotroph strains, the result demonstrated that mutants Mt1, Mt4 and Mt5 were deficient in pyrG gene. However, the lycopene content analysis shown that only Mt4 maintained the capacity of accumulating lycopene[(1 648±185)μg/g and (3 234±281)μg/g under dark and light conditions respectively], in addition, the biomass[(9.0±0.6)g/L] and growth properties of Mt4 is also similar to the original strain MU616. It suggested that Mt4 could be used as the receipt strain for the subsequent molecular manipulation. The acquisition of the pyrG mutant strain is very important for construction of the super-producing lycopene strains by molecular genetic manipulation.



Key wordsUracil auxotroph      Mucor circinelloides      Chemical mutagenesis      Electrotansformation      Lycopene     
Received: 13 October 2015      Published: 19 November 2015
ZTFLH:  Q78  
Cite this article:

ZHANG Ying-tong, CHEN Hai-qin, SONG Yuan-da, ZHANG Hao, CHEN Yong-quan, CHEN Wei. Isolation and Characterization of Mucor circinelloides pyrG Negative Mutant Strain. China Biotechnology, 2016, 36(3): 38-42.

URL:

https://manu60.magtech.com.cn/biotech/DOI:10.13523/j.cb.20160306     OR     https://manu60.magtech.com.cn/biotech/Y2016/V36/I3/38

[1] Rao A V, Rao L G. Carotenoids and human health. Pharmacological Research, 2007, 55(3): 207-216.
[2] Rodriguez S M, Paz B, De la Fuente J L, et al. Blakeslea trispora genes for carotene biosynthesis. Applied and Environmental Microbiology, 2004, 70(9): 5589-5594.
[3] Sutter R P, Capage D A, Harrison T L, et al. Trisporic acid biosynthesis in separate plus and minus cultures of Blakeslea trispora: identification by Mucor assay of two mating-type-specific components. Journal of Bacteriology, 1973, 114(3): 1074-1082.
[4] Ruizhidalgo M J, Lopezmatas M A, Velayos A, et al. Carotenoid mutants of Mucor circinelloides. Botanica Acta, 1995, 108(4): 396-400.
[5] Gutierrez A, Lopez-Garcia A S, Garre V, et al. High reliability transformation of the basal fungus Mucor circinelloides by electroporation. Journal of Microbiological Methods, 2011, 84(3): 442-446.
[6] Umezu K, Amaya T, Yoshimoto A. et al. Purification and properties of orotidine-5'-phosphate pyrophosphorylase and orotidine-5'-phosphate decarboxylase from baker's yeast. Journal of Biochemistry, 1971, 70(2): 249-262.
[7] Boeke J D, LaCroute F, Fink G R, et al. A positive selection for mutants lacking orotidine-5'-phosphate decarboxylase activity in yeast: 5-fluoro-orotic acid resistance. Molecular & General Genetics, 1984, 197(2): 345-346.
[8] 王连会,茅文俊,鲍大鹏. 香菇尿嘧啶营养缺陷型菌株的筛选与分子验证.上海农业学报, 2014, 30(3): 6-9. Wang L H, Mao W J, Bao D P. Selected and molecular verification for uracil auxotrophic mutants of Lentinula edodes. Acta Agriculturae Shanghai, 2014, 30(3): 6-9.
[9] 王宇光,雷禄旺,孙建波,等. 紫外诱变筛选海洋红酵母S8的尿嘧啶缺陷型菌株. 基因组学与应用生物学, 2010, 29(5):838-842. Wang Y G, Lei L W, Sun J B, et al. The selection of uracil auxotroph strain of Rhodotorula benthica S8 treated by UV-induced mutation. Genomic and Applied Biology, 2010, 29(5):838-842.
[10] Navarro E, Sandmann G, Torres-Martinez S. Mutants of carotenoid biosynthetic pathway of Mucor circinelloides. Experimental Mycology, 1995,19(3):186-190.
[11] Benito E P, Campuzano V, Lopez-Matas M A, et al. Isolation, characterization and transformation, by autonomous replication of Mucor circinelloides OMPdecase-deficient mutants. Molecular & General Genetics, 1995, 248(2): 126-135.
[12] Lasker B A, Borgia P T. High-frequency heterokaryon formation by Mucor racemosus. Journal of Bacteriology, 1980, 141(2): 565-569.
[13] Nicolas F E, de Haro J P, Torres-Martinez S, et al. Mutants defective in a Mucor circinelloides dicer-like gene are not compromised in siRNA silencing but display developmental defects. Fungal Genetics and Biology, 2007, 44(6): 504-516.
[14] Davies B H. Chemistry and Biochemistry of Plant Pigments. 2nd ed. London: Academic Press, 1976:38-165.
[15] Kalpaxis D, Werner H, Marcotte E B, et al. Positive selection for Dictyostelium mutants lacking uridine monophosphate synthase activity based on resistance to 5-fluoro-orotic acid. Developmental Genetics, 1990, 11(5-6): 396-402.
[16] Kanamasa S, Yamaoka K, Kawaguchi T, et al. Transformation of Aspergillus aculeatus using the drug resistance gene of Aspergillus oryzae and the pyrG gene of Aspergillus nidulans. Bioscience, Biotechnology, and Biochemistry, 2003, 67(12): 2661-2663.
[17] Long H, Wang T H, Zhang Y K. Isolation of Trichoderma reesei pyrG negative mutant by UV mutagenesis and its application in transformation. Chemical Research in Chinese Universities, 2008, 24(5): 565-569.
[18] Hamedi H, Misaghi A, Modarressi M H, et al. Generation of a uracil auxotroph strain of the probiotic yeast Saccharomyces boulardii as a host for the recombinant protein production. Avicenna Journal of Medical Biotechnology, 2013, 5(1): 29-34.

[1] HUO Pei, JI Jing, WANG Gang, GUAN Chun-feng, JIN Chao. Transformation and Genetic Analysis of Maize with the Lycb[J]. China Biotechnology, 2012, 32(07): 43-48.
[2] LI An-Lu, TUN Qi-Ci, WU Zhen-Jun, DAN Nan, MO Gong-Gui. Study on Adsorption Properties of Lycopene from the Broth of Blakeslea trispora by Macroporous Resin[J]. China Biotechnology, 2010, 30(04): 71-76.
[3] WANG Min, YANG Hui, GAO Dun-Lian, MA Rong-Cai. Breeding of High-yield lycopene Producing Strains of Streptomyces rimosus and Studies on its Flask Culture Conditions[J]. China Biotechnology, 2009, 29(12): 64-68.
[4] MO Gong-Gui- Xu-Chuan-Hua- She-Yong. Advances in Lycopene Production by Blakeslea trispora Fermentation[J]. China Biotechnology, 2009, 29(03): 105-109.
[5] . The Study on Gene Engineering strains Producing Lycopene[J]. China Biotechnology, 2006, 26(11): 81-86.
[6] . Studies of Escherichia coli accumulating lycopene and its culturing conditions[J]. China Biotechnology, 2006, 26(08): 47-51.