Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2013, Vol. 33 Issue (8): 61-66    DOI:
    
Artificial sRNAs Silencing csrA to Optimize the Production of L-tyrosine in Escherichia coli
YAO Yuan-feng, ZHAO Ying, ZHAO Guang-rong
Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin University, Tianjin 300072, China
Download: HTML   PDF(1020KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  As a powerful gene regulation tool, small regulatory RNAs (sRNAs) have been widely applied in animals and plants. Recently, with the continual founding of different sRNAs and the understanding about their regulatory mechanisms in bacteria, the new developed artificial sRNAs engineering also shows a huge advantage on the microbial metabolic engineering. Carbon storage regulator (CsrA) is a post-transcriptional global regulator that has a negative role in the L-tyrosine biosynthetic pathway. By designing and screening sRNAs sequence of csrA, its effect on the L-tyrosine production in E. coli was analyzed. The results indicated that the artificial sRNAs could lead to remarkable increase of L-tyrosine production. High copy number expression of shorter anti-csrA sRNA2 which improved 1.2-fold L-tyrosine production was better than the longer sRNA1. This new strategy, being simple yet very powerful for global metabolic regulation, is thus expected to facilitate the efficient development of synthetic biology and microbial cell factories.

Key wordsArtificial sRNAs      Gene silencing      csrA gene      L-tyrosine     
Received: 02 May 2013      Published: 25 August 2013
ZTFLH:  Q819  
Cite this article:

YAO Yuan-feng, ZHAO Ying, ZHAO Guang-rong. Artificial sRNAs Silencing csrA to Optimize the Production of L-tyrosine in Escherichia coli. China Biotechnology, 2013, 33(8): 61-66.

URL:

https://manu60.magtech.com.cn/biotech/     OR     https://manu60.magtech.com.cn/biotech/Y2013/V33/I8/61

[1] Romeo T. Global regulation by the small RNA-binding protein CsrA and the non-coding RNA molecule CsrB. Molecular Microbiology, 1998,29(6):1321-1330.
[2] Tatarko M, Romeo T. Disruption of a global regulatory gene to enhance central carbon flux into phenylalanine biosynthesis in Escherichia coli. Current Microbiology, 2001,43(1):26-32.
[3] Timmermans J, Van Melderen L. Conditional essentiality of the csrA gene in Escherichia coli. Journal of Bacteriology, 2009,191(5):1722-1724.
[4] Svetlana A S, Eugene V K. Origins and evolution of eukaryotic RNA interference. Trends in Ecology & Evolution, 2008,22(10)578-587.
[5] Kim D, Rossi J. RNAi mechanisms and applications. Biotechniques, 2008,44(5):613-616.
[6] Carothers J M, Goler J A, Juminaga D, et al. Model-driven engineering of RNA devices to quantitatively program gene expression. Science, 2011,334(6063):1716-1719.
[7] Isaacs F J, Dwyer D J, Ding C, et al. Engineered riboregulators enable post-transcriptional control of gene expression. Nature Biotechnology, 2004,22(7):841-847.
[8] Saito H, Inoue T. Synthetic biology with RNA motifs. International Journal of Biochemistry & Cell Biology, 2009,41(2):398-404.
[9] Kang Z, Wang X, Li Y, et al. Small RNA RyhB as a potential tool used for metabolic engineering in Escherichia coli. Biotechnology Letters, 2012,34(3):527-531.
[10] Gottesman S. The small RNA regulators of Escherichia coli: roles and mechanisms. Annu Rev Microbiol, 2004,58(1):303-328.
[11] Win M N, Smolke C D. Higher-order cellular information processing with synthetic RNA devices. Science, 2008,322(5900):456-460.
[12] Man S, Cheng R, Miao C, et al. Artificial trans-encoded small non-coding RNAs specifically silence the selected gene expression in bacteria. Nucleic Acids Research, 2011,39(8):e50.
[13] Sharma V, Yamamura A, Yokobayashi Y. Engineering artificial small RNAs for conditional gene silencing in Escherichia coli. ACS Synthetic Biology, 2011,1(1):6-13.
[14] Dokyun N, Yoo S M, Chung H, et al. Metabolic engineering of Escherichia coli using synthetic small regulatory RNAs. Nature Biotechnology, 2013,31(2):170-174.
[15] Neidhardt F C, Bloch P L, Smith D F. Culture medium for enterobacteria. Journal of Bacteriology, 1974,119(3):736-747.
[16] Markham N R, Zuker M. DINAMelt web server for nucleic acid melting prediction. Nucleic Acids Research, 2005,33(suppl 2):577-581.
[17] Valentin-Hansen P, Eriksen M, Udesen C. The bacterial Sm-like protein Hfq: a key player in RNA transactions. Molecular Microbiology, 2004,51(6):1525-1533.
[18] Lease R A, Woodson S A. Cycling of the Sm-like protein Hfq on the DsrA small regulatory RNA. Journal of Molecular Biology, 2004,344(5):1211-1223.
[19] Urban J H, Vogel J. Translational control and target recognition by Escherichia coli small RNAs in vivo. Nucleic Acids Research, 2007,35(3):1018-1037.
[20] Chen S, Zhang A, Blyn L B, et al. MicC, a second small-RNA regulator of Omp protein expression in Escherichia coli. Journal of Bacteriology, 2004,186(20):6689-6697.
[21] 许德晖,黄辰,刘利英,等.高效siRNA设计的研究进展.遗传,2006, 28(11): 1457-1461. Xu D H, Huang C, Liu L Y, et al. New progress of the high efficient siRNA design. Hereditas, 2006,28(11):1457-1461.
[22] Flintoft L. Synthetic biology: Small RNAs improve metabolic engineering. Nature Reviews Genetics, 2013,14(3):155.
[1] QUAN Mei-yu, GUO Qiang, ZHANG Kun-shui, FANF Rui, LI Cui-lin, DU Jun. Generation of Two Mouse Melanoma Cell Lines Stable Overexpression or Silencing of Nodal and Identification of EMT Phenotype[J]. China Biotechnology, 2014, 34(3): 1-8.
[2] MA Lang-lang, JIANG Zhou, HUANG Xiao-bo, SHEN Ya-ou, PAN Guang-tang. Research Progress of DNA Methylation on Plant Regulation[J]. China Biotechnology, 2013, 33(9): 101-110.
[3] ZHANG Li, LUO Yi-bo, MU Yan-shuang, ZHU Jiang, LI Hui, LIU Zhong-hua. Construction and Identification of Doxycycline-inducible shRNA Expressing Vector Targeting Porcine Nanog[J]. China Biotechnology, 2011, 31(9): 35-42.
[4] ZHOU Lu, DONG Chun-juan, LIU Jin-yuan. Increased Resistance of Arabidopsis to Cold and Salt Stresses by Suppresing the Transcription Repressors of the A-5 Group among the DREB Subfamily Transcription Factors through Artificial microRNA[J]. China Biotechnology, 2011, 31(5): 34-41.
[5] . Construction of Artificial microRNA targeting the Transcription Repressors of the A-5 Group among the DREB Subfamily[J]. China Biotechnology, 2011, 31(05): 0-0.
[6] XIE Mei-Xia, LIU Jun-Mei, LI Hao, CUI Dong-Qing, WANG Jing-Cheng, ZHANG Zhi-Yi, AN Xin-Min. amiRNAi: A New Approach for Highly Specific and Stable Gene Silencing[J]. China Biotechnology, 2010, 30(08): 118-125.