Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2012, Vol. 32 Issue (02): 117-122    DOI:
    
Advance in Active Biofilm Dispersal Mechanism
GAO Zong-liang, GU Yuan-xing, ZHAO Feng, LIU Yong-sheng
Key Laboratory of Veterinary Public Health of the Ministry of Agriculture,Key Laboratory of Animal Virology of the Ministry of Agriculture, State Key Laboratory of Veterinary Etiological Biology,Lanzhou Veterinary Research Institute Chinese Academy of Agricultural Sciences, Lanzhou 730046,China
Download: HTML   PDF(416KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Microbial biofilms are composed of a hydrated matrix of biopolymers including polypeptides, polysaccharides and nucleic acids and act as a protective barrier and microenvironment for the inhabiting microbes. The resistantce of biofilms to antimicrobial agents leads to a range of problems, including medical treatment, which highlights the significance of biofilm dispersal. The mechanisms that result in active dispersal of bacteria from biofilm, which include the synthesis of enzymes, the return of motility, surfactant production and cell lysis were reviewed.



Key wordsBiofilm dispersal      Degrading enzymes      Seeding dispersal      Cell lysis     
Received: 30 September 2011      Published: 25 February 2012
ZTFLH:  Q939.93  
Cite this article:

GAO Zong-liang, GU Yuan-xing, ZHAO Feng, LIU Yong-sheng. Advance in Active Biofilm Dispersal Mechanism. China Biotechnology, 2012, 32(02): 117-122.

URL:

https://manu60.magtech.com.cn/biotech/     OR     https://manu60.magtech.com.cn/biotech/Y2012/V32/I02/117


[1] Hiby N, Bjarnsholt T, Givskov M, et al. Antibiotic resistance of bacterial biofilms. Int J Antimicrob Agents, 2010, 35(4):322-332.

[2] Marsh P D. Dental plaque as a biofilm and a microbial community - implications for health and disease. BMC Oral Health, 2006, 6(Suppl 1):14.

[3] Costerton J W, Stewart P S, Greenberg E P. Bacterial biofilms: a common cause of persistent infections. Science, 1999, 284(5418):1318-1322.

[4] Uppuluri P, Chaturvedi A K, Srinivasan A, et al. Dispersion as an important step in the Candida albicans biofilm developmental cycle. PLoS Pathog, 2010, 6(3):e1000828.

[5] Boyd A, Chakrabarty A M. Role of alginate lyase in cell detachment of Pseudomonas aeruginosa. Appl Environ Microbiol, 1994, 60(7):2355-2359.

[6] Brady L J, Piacentini D A, Crowley P J, et al. Differentiation of salivary agglutinin-mediated adherence and aggregation of mutans streptococci by use of monoclonal antibodies against the major surface adhesin P1. Infect Immun, 1992, 60(3):1008-1017.

[7] Vats N, Lee S F. Active detachment of Streptococcus mutans cells adhered to epon-hydroxylapatite surfaces coated with salivary proteins in vitro. Arch Oral Biol, 2000, 45(4):305-314.

[8] Dow J M, Crossman L, Findlay K, et al. Biofilm dispersal in Xanthomonas campestris is controlled by cell-cell signaling and is required for full virulence to plants. Proc Natl Acad Sci U S A, 2003, 100(19):10995-10000.

[9] Davies D G, Marques C N. A fatty acid messenger is responsible for inducing dispersion in microbial biofilms. J Bacteriol, 2009, 191(5):1393-1403.

[10] Itoh Y, Wang X, Hinnebusch B J, et al. Depolymerization of beta-1,6-N-acetyl-D-glucosamine disrupts the integrity of diverse bacterial biofilms. J Bacteriol, 2005, 187(1):382-387.

[11] Itoh Y, Wang X, Hinnebusch B J, et al. Depolymerization of beta-1,6-N-acetyl-D-glucosamine disrupts the integrity of diverse bacterial biofilms. J Bacteriol, 2005, 187(1):382-387.

[12] Kaplan J B, Ragunath C, Velliyagounder K, et al. Enzymatic detachment of Staphylococcus epidermidis biofilms. Antimicrob Agents Chemother, 2004, 48(7):2633-2366.

[13] Parise G, Mishra M, Itoh Y, et al. Role of a putative polysaccharide locus in Bordetella biofilm development. J Bacteriol, 2007, 189(3):750-760.

[14] Itoh Y, Wang X, Hinnebusch B J, et al. Depolymerization of beta-1,6-N-acetyl-D-glucosamine disrupts the integrity of diverse bacterial biofilms. J Bacteriol, 2005, 187(1):382-387.

[15] Itoh Y, Wang X, Hinnebusch B J, et al. Depolymerization of beta-1,6-N-acetyl-D-glucosamine disrupts the integrity of diverse bacterial biofilms. J Bacteriol, 2005, 187(1):382-387.

[16] Craigen B, Dashiff A, Kadouri D E. The use of commercially available alpha-amylase compounds to inhibit and remove Staphylococcus aureus biofilms. Open Microbiol J, 2011, 5:21-31.

[17] Kolodkin-Gal I, Romero D, Cao S, et al. D-amino acids trigger biofilm disassembly. Science, 2010, 328(5978):627-629.

[18] Nijland R, Hall M J, Burgess J G. Dispersal of biofilms by secreted, matrix degrading, bacterial DNase. PLoS One, 2010, 5(12):e15668.

[19] Mann E E, Rice K C, Boles B R, et al. Modulation of cDNA release and degradation affects Staphylococcus aureus biofilm maturation. PLoS One, 2009, 4(6):e5822.

[20] Pecharki D, Petersen F C, Scheie A A. Role of hyaluronidase in Streptococcus intermedius biofilm. Microbiology, 2008, 154(Pt3):932-938.

[21] Finkelstein R A, Boesman-Finkelstein M, Chang Y, et al. Vibrio cholerae hemagglutinin/protease, colonial variation, virulence, and detachment. Infect Immun, 1992, 60(2):472-478.

[22] Kaplan J B. Biofilm dispersal: mechanisms, clinical implications, and potential therapeutic uses. J Dent Res, 2010, 89(3):205-218.

[23] Jackson D W, Suzuki K, Oakford L,et al. Biofilm formation and dispersal under the influence of the global regulator CsrA of Escherichia coli. J Bacteriol, 2002, 184(1):290-301.

[24] Purevdorj-Gage B, Costerton W J, Stoodley P. Phenotypic differentiation and seeding dispersal in non-mucoid and mucoid Pseudomonas aeruginosa biofilms. Microbiology, 2005, 151(Pt 5):1569-1576.

[25] Ma L, Conover M, Lu H, et al. Assembly and development of the Pseudomonas aeruginosa biofilm matrix. PLoS Pathog, 2009, 5(3):e1000354.

[26] Mai-Prochnow A, Lucas-Elio P, Egan S, et al. Hydrogen peroxide linked to lysine oxidase activity facilitates biofilm differentiation and dispersal in several gram-negative bacteria. J Bacteriol, 2008, 190(15):5493-5501.

[27] Purevdorj-Gage B, Costerton W J, Stoodley P. Phenotypic differentiation and seeding dispersal in non-mucoid and mucoid Pseudomonas aeruginosa biofilms. Microbiology, 2005, 151(Pt 5):1569-1576.

[28] Boles B R, Thoendel M, Singh P K. Rhamnolipids mediate detachment of Pseudomonas aeruginosa from biofilms. Mol Microbiol, 2005, 57(5):1210-1223.

[29] Glick R, Gilmour C, Tremblay J, et al. Increase in rhamnolipid synthesis under iron-limiting conditions influences surface motility and biofilm formation in Pseudomonas aeruginosa. J Bacteriol, 2010, 192(12):2973-2980.

[30] Webb J S, Thompson L S, James S, et al. Cell death in Pseudomonas aeruginosa biofilm development. J Bacteriol, 2003, 185(15):4585-4592.

[31] Ma L, Conover M, Lu H,et al. Assembly and development of the Pseudomonas aeruginosa biofilm matrix. PLoS Pathog, 2009, 5(3):e1000354

[32] Mai-Prochnow A, Webb J S, Ferrari B C, et al. Ecological advantages of autolysis during the development and dispersal of Pseudoalteromonas tunicata biofilms. Appl Environ Microbiol, 2006, 72(8):5414-5420.

[33] Ranjit D K, Endres J L, Bayles K W. Staphylococcus aureus CidA and LrgA proteins exhibit holin-like properties. J Bacteriol, 2011, 193(10):2468-2476.

[34] Priya Uppuluril, Ashok K Chaturvedil. The biological role of death and lysis in biofilm development. Nat Rev Microbiol, 2007, 5(9):721-726.

[1] Cheng-cheng ZHAO,Chang-po SUN,Xiao-jiao CHANG,Song-ling WU,Zhen-quan LIN. Construction and Application of Cell Lysis Systems in the Expression of Mycotoxin Degrading Enzyme in Escherichia coli[J]. China Biotechnology, 2019, 39(4): 69-77.