Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2013, Vol. 33 Issue (2): 96-102    DOI:
    
RANTES Derivates and HIV-1 Entry Inhibitor
NIE Lun1,2, WU Wen-yan2
1. School of Life Sciences, Sun YAT-sen University, Guangzhou 510275, China;
2. Institute of Shenzhen, Sun YAT-sen University, Shenzhen 518057, China
Download: HTML   PDF(442KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

HIV-1 entry inhibitor is a new hot spot in the area of AIDS drug development. The identification of CCR5 as the main HIV co-receptor have triggered a wealth of research about CCR5-targeting inhibitors. Natural ligands of CCR5, RANTES, MIP-1α, and MIP-1β are potent HIV-1 inhibitors. Lots of efforts have focused on RANTES engineering aiming at enhancing the antivirus ability of the native molecule, while reducing its side effect. Here an overview of RANTES derivates developed as HIV-1 entry inhibitors is presented.



Key wordsRANTES      HIV-1      Inhibitors     
Received: 12 November 2012      Published: 25 February 2013
ZTFLH:  Q819  
Cite this article:

NIE Lun, WU Wen-yan. RANTES Derivates and HIV-1 Entry Inhibitor. China Biotechnology, 2013, 33(2): 96-102.

URL:

https://manu60.magtech.com.cn/biotech/     OR     https://manu60.magtech.com.cn/biotech/Y2013/V33/I2/96

[1] Burton D R, Rafi A, Dan H B, et al. A blueprint for HIV vaccine discovery. Cell Host Microbe, 2012,12(4): 396-407.
[2] Robb M L, Supachai R N, Sorachai N, et al. Risk behaviour and time as covariates for efficacy of the HIV-1 vaccine regimen ALVAC-HIV (vCP1521) and AIDSVAX B/E: a post-hoc analysis of the Thai phase 3 efficacy trial RV 144. Lancet Infect Dis, 2012, 12(7): 531-537.
[3] Thomas J H. To neutralize or not, a key HIV vaccine question. Nature, 2011, 17(10): 1195-1197.
[4] Johnston M I, Fauci A S. HIV-1 vaccine development—improving on natural immunity. N Engl J Med, 2011, 365(10): 873-875.
[5] Dereuddre-Bosquet N. MiniCD4 microbicide prevents HIV infection of human mucosal explants and vaginal transmission of SHIV162P3 in cynomolgus macaques. PLoS Pathogens, 2012, 8(12): e1003071.
[6] Preston N, Theresa K, Thomas N, et al. A topical microbicide Gel formulation of CCR5 antagonist maraviroc prevents HIV-1 vaginal transmission in humanized RAG-hu mice. Plus One, 2011,6(6):e20209.
[7] Huskens D, Schols D. Algal lectins as potential HIV microbicide candidates . Mar Drugs, 2012, 10(7):1476-1497.
[8] Craig B W , John C T, Robert W D. HIV: Cell binding and entry. Cold Spring Harb Perspect Med, 2012, 2:a006866.
[9] Berger E A. A new classification for HIV-1. Nature, 1998,391(6664): 240.
[10] Hogan C M, Hammer S M. Host determinants in HIV infection and disease. Part 2: genetic factors and implications for antiretroviral therapeutics. Ann Intern Med, 2001, 134: 978-996.
[11] Clerici M, Butto S, Lukwiya M, et al. Immune activation in Africa is environmentally-driven and is associated with upregulation of CCR5. Italian-Ugandan AIDS Project Aids, 2000, 14: 2083-2092.
[12] Quillent C, Oberlin E, Braun J, et al. HIV-1-resistance phenotype conferred by combination of two separate inherited mutations of CCR5 gene. Lancet, 1998, 351, 14-18.
[13] Cocchi F, DeVico A L, Garzino D, et al. Identification of RANTES, MIP-1 alpha, and MIP-1beta as the major HIV-1-suppressive factors produced by CD8+ T cells . Science, 1995, 270(5243):1811-1815.
[14] Doms R W. Fusing HIV and chemokine receptors. J Immunol, 2011, 186(11): 6073-6075.
[15] Skelton N J, Schall T J. NMR assignments and solution conformation of RANTES, a chemokine of the C-C type. Biol Chem, 1995,34(16):5329-5342.
[16] Chung C W, Cooke R M, Proudfoot A E, et al. The three-dimensional solution structure of RANTES. BiolChem, 1995, 34(29):9307-9414.
[17] Czaplewski L G, McKeating J. Identification of amino acid residues critical for aggregation of human CC chemokines macrophage inflammatory protein (MIP)-1alhpa,MIP-1beta, and RANTES, Characterization of active disaggregated chemokine variant. Biol Chem, 1999, 274 (23):16077-16084.
[18] Mysinger M M. Structure-based ligand discovery for the protein-protein interface of chemokine receptor CXCR4. Proc Natl Acad Sci U S A, 2012, 109(14): 5517-5522.
[19] Munoz L M. Chemokine receptor oligomerization: a further step toward chemokine function. Immunology Letters, 2012, 145(1-2): 23-29.
[20] Duma L, Haussinger D, Rogowski, et al. Recognition of RANTES by extracellular parts of the CCR5 receptor. Journal of Molecular Biology, 2007, 365 (4):1063-1075.
[21] Huang C C, Lam S N, Acharya P, et al. Structures of the CCR5 N terminus and of a tyrosine-sulfated antibody with HIV-1-1 gp120 and CD4. Science, 2007, 317 (5846):1930-1934.
[22] Jin H, Shen X, Baggett B R, et al. The human CC chemokine MIP-1beta dimer is not competent to bind to the CCR5 receptor. Journal of Biochemistry, 2007,282 (38): 27976-27983.
[23] Wang J, Michael N. Dimerization of chemokine receptors in living cells: key to receptor function and novel targets for therapy. Drug Discovery Today, 2008, 13:625-632.
[24] Baker A M, Sauliere A, Gaibelet G, et al. CD4 interacts constitutively with multiple CCR5 at the plasma membrane of living cells. The Journal of Biological Chemistry, 2007, 282(48): 35163-35168.
[25] Angelika R, Barbara B, Elena G ,et al. A biophysica insight into the RANTES—glycosaminoglycan interaction. Biochimica et Biophysica Acta, 2009, 1794:577-582.
[26] Martin L, Blanpain C, Garnier P, et al. Structural and functional analysis of the RANTES-glycosaminoglycans interactions. Biochemistry, 2001, 40(21): 6303-6318.
[27] McCornack M, Boren D M, Li Wang P J. Glycosaminoglycan disaccharide alters the dimer dissociation constant of the chemokine MIP-1 beta. Biochemistry, 2004, 43 (31) :10090-10101.
[28] Proudfoot A E, Handel T M, Johnson Z, et al. Glycosaminoglycan binding and oligomerization are essential for the in vivo activity of certain chemokines. Proc Natl Acad Sci U S A, 2003,100(4):1885-1890.
[29] Paavola C D, Hemmerich S, Grunberger D, et al. Monomeric monocyte chemoattractant protein-1 (MCP-1) binds and activates the MCP-1 receptorCCR2B. The Journal of Biological Chemistry, 1998, 273(50): 33157-33165.
[30] Oliver H , Karim D , Danielle P, et al. Human immune- deficiency virus type1 entry inhibitors selected on living cells from a library of Phage Chemokines . Journal of Virology, 2003, 7: 6637-6644.
[31] Jin H, Ioannis K, Li P, et al. Structural and functional studies of potent anti-HIV chemokine variant P2-RANTES. Proteins , 2010, 78:295-308.
[32] Grone H J. Met-RANTES reduces vascular and tubular damage during acute renal transplant rejection: blocking monocyte arrest and recruitment. FASEB J, 1999, 13 (11): 1371-1383.
[33] Simmons G, Clapham P R, Picard L, et al. Potent inhibition of HIV-1 infectivity in macrophages and lymphocytes by a novel CCR5 antagonist. Science, 1997, 276 (5310) :276-279.
[34] Mosier D E, Picchio G R, Gulizia R J, et al. Highly potent RANTES analogues either prevent CCR5-using human immunodeficiency virus type 1 infection in vivo or rapidly select for CXCR4-using variants. Journal of Virology ,1999,73(5):3544-3450.
[35] Hartley O, Gaertner H, Wilken J, et al. Medicinal chemistry applied to a synthetic protein:development of highly potent HIV-1 entry inhibitors . PNAS 2004,101 (47):16460-16465.
[36] Lederman M M, Veazey R S, Offord R, et al. Prevention of vaginal SHIV-1 transmission in Rhesus macaques through inhibition of CCR5. Science, 2004, 306 (5695) :485-487.
[37] Oravecz T, Pall M, Roderiquez G, et al. Regulation of the receptor specificity and function of the chemokine RANTES by dipeptidyl peptidase IV (CD26)-mediated cleavage. J Exp Med, 1997, 186(11):1865-1872.
[38] Arenzana S F, Virelizier J L, Rousset D, et al. HIV blocked by chemokine antagonist. Nature, 1996, 383(6599):400.
[39] Polo S. Enhancement of the HIV-1-1 inhibitory activity of RANTES by modification of the N-terminal region: dissociation from CCR5 activation. European Journal of Immunology , 2000, 30(11): 3190-3198.
[40] Samson M, LaRosa G, Libert F, et al. The second extracellular loop of CCR5 is the major determinant of ligand specificity. Journal of Biological Chemisry, 1997, 272(40) :24934-24941.
[41] Salanga, C L, Handel T M. Chemokine oligomerization and interactions with receptors and glycosaminoglycans: The role of structural dynamics in function. Experimental Cell Research, 2011. 317(5): 590-601.
[42] Kobilka B K, Deupi X. Conformational complexity of G-protein-coupled receptors . Trends in Pharmacological Science, 2007, 28(8): 397-406.
[43] Vangelista L, Longhi R, Sironi F, et al. Critical role of the N-loop and beta1-strand hydrophobic clusters of RANTES-derived peptides in anti-HIV activity. Biochemical and Biophysical Research Communications, 2006,351(3):664-668.
[44] Lusso P. Molecular engineering of RANTES peptide mimetic with potent anti-HIV-1 activity. FASEB J, 2011, 25(4): 1230-1243.
[45] Michael C. HIV Envelop: Challenges and opportunities for development of entry inhibitors. Trends in Microbiology, 2011, 19(4): 191-197.
[46] Anastassopoulou C G .Resistance of a human immunodeficiency virus type 1 isolate to a small molecule CCR5 inhibitor can involve sequence changes in both gp120 and gp41. Virology, 2011, 413(1): 47-59.
[47] Schellenberg J J, Plummer F A. The microbiological context of HIV-1 resistance: vaginal microbiota and mucosal inflammation at the viral point of entry. International Journal of Inflammation, 2012, 2012: 131243.
[48] Vangelista L, Massimiliano S, Liu X, et al., Engineering of Lactobacillus jensenii to secrete RANTES and a CCR5 antagonist analogue as live HIV-1 blockers. Antimicrobial Agents and Chemotherapy, 2010, l54(7): 2994-3001.
[49] Balkus J E, Mitchell C, Agnew, et al. Detection of hydrogen peroxide-producing Lactobacillus species in the vagina: a comparison of culture and quantitative PCR among HIV-1 seropositive women. BMC Infectious Disease, 2012,12: 188.
[50] Liu X, Lagenaur L A, Simpson D A, et al. Engineered vaginal lactobacillus strain for mucosal delivery of the human immunodeficiency virus inhibitor cyanovirin-N. Antimicrob. Agents Chemother, 2006, 50(10):3250-3259.
[51] Nishiyama Y, Murakami T Shikama. Anti-HIV-1 peptides derived from partial amino acid sequences of CC-chemokine RANTES. Regulated upon activation, normal T-cell expressed and secreted. Bioorganic & Medicinal Chemistry Letters, 2002, 10(12):4113-4117.
[52] Ramnarine E J, Devico A L, Vigil-Cruz S C. Analogues of N-terminal truncated synthetic peptide fragments derived from RANTES inhibitHIV-1-1 infectivity. Bioorganic & Medicinal Chemistry Letters, 2006, 16(1):93-95.
[53] Mack M, Pfirstinger J Haas. Preferential targeting of CD4-CCR5 complexes with bifunctional inhibitors: a novel approach to block HIV-1-1 infection. Journal of Immunology, 2005, 175(11):7586-7593.

[1] LI Wen,CHEN Jie,HU Wei-nan,QI Ya-yun,FU Yi-hong,LIU Jia-min,WANG Zhen-chao,OUYANG Gui-ping. Research Advances in the Study of EGFR Mutations Resistance and Its Small Molecule Inhibitors[J]. China Biotechnology, 2019, 39(10): 97-104.
[2] YUAN Ya-hong, ZHAO Shan-shan, WANG Xiao-li, TENG Zhi-ping, LI Dong-sheng, ZENG Yi. HIV-1 Tat Protein Inhibits the Hematopoiesis Support Function of Bone Marrow Mesenchymal Stem Cells[J]. China Biotechnology, 2017, 37(6): 1-8.
[3] WANG Xiao-li, YU Qing, YUAN Ya-hong, TENG Zhi-ping, LI Dong-sheng, ZENG Yi. Targeting TRIM5α Gene of CD4+ T cells of Macaca mulatta Affect Their Ability on HIV Infection[J]. China Biotechnology, 2017, 37(2): 15-19.
[4] Li-na GU,Liang-zhi LI,Wei-qiang GUO,Jing-sheng GU,Xue-mei YAO,Xin JU. The Regulation on Polyols Production by Trichosporonoides oedocephalis with HOG1 Inhibitors and Its Mechanism[J]. China Biotechnology, 2017, 37(12): 40-48.
[5] GUO Xue-jiao, ZHA Jian, YAO Kun, WANG Xin, LI Bing-zhi, YUAN Ying-jin. Accelerated Ethanol Production by a Tolerant Saccharomyces cerevisiae to Inhibitor Mixture of Furfural, Acetic Acid and Phenol[J]. China Biotechnology, 2016, 36(5): 97-105.
[6] QIN Ling-yun, CHEN Rong, SU Zheng-ding. Design of Mdm2/MdmX Inhibitors[J]. China Biotechnology, 2015, 35(9): 78-84.
[7] TIAN Cong-hui, TANG Yan-ting, WANG Quan, ZHOU Hong-gang. Estabilishment and Application of a Model for Drug Screening Targeting Neprilysin Proteinase[J]. China Biotechnology, 2015, 35(2): 52-58.
[8] ZHU Yi-long, LI Chang, GUO Yan, LIU Cun-xia, DU Shou-wen, WANG Mao-peng, JIN Ning-yi. Construction and Selection of the Recombinant Fowlpox Expressing HIV-1 gag[J]. China Biotechnology, 2014, 34(1): 57-63.
[9] ZHANG Dong-xu. Recent Advances in Biological Detoxification of Inhibitors in Lignocellulose Hydrolysate[J]. China Biotechnology, 2013, 33(5): 120-124.
[10] ZHANG Ning, PAN Li, NIU Guo-jun, WANG Wen-ming, ZHOU Hong-gang, YANG Cheng. Establishment and Application of a System for Drug Screening Targeting MERS-CoV Main Proteinase[J]. China Biotechnology, 2013, 33(12): 51-56.
[11] LIU Bin, LIU Xin, LI Shan, HE Hong-qiu, ZHANG Xiao-yi, TAN Jian-jun, CHEN Wei-zu, WANG Cun-xin. A Fluorescent Screening Assay for HIV-1 Integrase Inhibitors Targeting Strand Transfer[J]. China Biotechnology, 2013, 33(1): 67-71.
[12] CHEN Feng, YANG Yi-shu, ZENG Yi. Current Development on RNA-based Anti-HIV-1 Gene Therapy[J]. China Biotechnology, 2012, 32(6): 93-97.
[13] LI Jian-bin, MI Zhi-qiang, AN Xiao-ping, TAN Li, CHEN Bin, WANG Xiao-na, FAN Hua-hao, ZHANG Wen-hui, ZHANG Bo, FANG Xiang, TONG Yi-gang. Random shRNA Library Screen for shRNAs Targeting HIV-1 LTR Related Host Factors with TK Suicide Gene[J]. China Biotechnology, 2012, 32(09): 48-54.
[14] HE Hong-qiu, JIA Yu-yue. Soluble Expression and Inhibitor Screening of the Central Core Domain of HIV-1 Integrase[J]. China Biotechnology, 2012, 32(03): 14-19.
[15] HE Hong-qiu, LIU Bin, CHEN Wei-zu, WANG Cun-xin. Kinetic Study of The HIV-1 Integrase 3'-processing Reaction Using a Molecular Beacons Based Assay[J]. China Biotechnology, 2012, 32(02): 76-81.