Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2009, Vol. 29 Issue (03): 100-104    DOI:
    
Genetic Progress in Plant Resistance to Salt Stress
Download: HTML   PDF(380KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Salinity is the main limitation factor for plant growth and crop production. To improve salinity tolerance of plants, many approaches by genetic means towards to manipulating expression of functionally related classes of genes such as signaling pathways, ion channels and compatible solutes in the stabilization of biological structures under salinity stress are been developed. This review focuses on recent progress in molecular engineering to improve salt tolerance in plants and the possible problems in research.



Key wordssalt stress;salinity-tolerance gene;plant     
Received: 13 October 2008      Published: 31 March 2009
ZTFLH:  Q78  
Cite this article:

HE Yi-Min- Nian-Hong-Juan- Chen-Li-Mei. Genetic Progress in Plant Resistance to Salt Stress. China Biotechnology, 2009, 29(03): 100-104.

URL:

https://manu60.magtech.com.cn/biotech/     OR     https://manu60.magtech.com.cn/biotech/Y2009/V29/I03/100

[1] 曾洪学, 王俊. 盐害生理和植物抗盐性. 生物学通报, 2005, 40, 9: 1~3 Zeng H X, Wang J. Bulletin of Biology, 2005, 40, 9: 1~3 [2] 李合生. 现代植物生理学. 北京:高等教育出版社, 2002: 408~409 Li H S. Modern Plant Physiology. Beijing: Higher Education Press. 2002.408~ 409 [3] Winicov I. New molecular approaches to improving salt tolerance in crop plants. Annals of Botany, 1998, 82: 703~710 [4] Xiang Y, Huang Y M, Xiong L Z. Characterization of stressresponsive CIPK genes in rice for stress tolerance improvement. Plant Physiology, 2007, 144: 1416~1428 [5] Kim B G, Waadt R. The calcium sensor CBL10 mediates salt tolerance by regulating ion homeostasis in Arabidopsis. The Plant Journal, 2007, 52(3): 473~484 [6] Cao W H, Liu J, He X J, et al. Modulation of ethylene responses affects plant saltstress responses. Plant Physiology, 2007, 143(2): 707~719 [7] Quan R D, Lin H X, Mendoza I, et al. SCABP8/CBL10, a putative calcium sensor, interacts with the protein kinase SOS2 to protect arabidopsis shoot from salt stress. Plant Cell, 2007, 19 (4): 1415~1431 [8] Wang M, Gu D, Liu T, et al. Overexpression of a putative maize calcineurin Blike protein in Arabidopsis confers salt tolerance. Plant Mol Biol. 2007,65(6):733~746 [9] Anwar A, Khan M,Akbar D V. Seshu ethylene as an indicator of salt tolerance in rice. Cro PSci. 1987, 27:1242~1247 [10] Zhang Z G,Zhou H L, Chen T, et al. Evidence for serine/threonine and histidine kinase activity in the tobacco ethylene receptor protein NTHK2. Plant Physiol. 2004,136(2): 2971~2981 [11] Gao S, Zhang H, Tian Y, et al. Expression of TERF1 in rice regulates expression of stressresponsive genes and enhances tolerance to drought and highsalinity. Plant Cell Rep. 2008 27(11):1787~1795 [12] Lee H E, Shin D, Park S R, et al. Ethylene responsive element binding protein 1 (StEREBP1) from Solanum tuberosum increases tolerance to abiotic stress in transgenic potato plants. Biochemical and Biophysical Research Communications.2007, 353(4):863~868 [13] Wang H, Huang Z, Chen Q, et al. Ectopic overexpression of tomato JERF3 in tobacco activates downstream gene expression and enhances salt tolerance. Plant Mol Biol. 2004, 55(2):183~192 [14] Ghars M A, Parre E, Debez A, et al. Comparative salt tolerance analysis between Arabidopsis thaliana and Thellungiella halophila, with special emphasis on K+/Na+ selectivity and praline accumulation. J Plant Physiol, 2008, 165(6): 588~599 [15] Huang S B, Spielmeyer W, Lagudah E S, et al. A sodium transporter (HKT7) is a candidate for Nax1, a gene for salt tolerance in durum wheat. Plant Physiology, 2006, 142(4), 1718~1727 [16] Obata T, Kitamoto H K, Nakamura A, et al. Rice shaker potassium channel OsKAT1 confers tolerance to salinity stress on yeast and rice cells. Plant Physiology, 2007, 144(4): 1978~1985 [17] Qiu N W, Chen M, Guo J R, et al. Coordinate upregulation of VH+ATPase and vacuolar Na+/H+ antiporter as a response to NaCl treatment in a C3 halophyte Suaeda salsa. Plant Science, 2007, 172: 1218~1225 [18] Zhao J S, Zhi D Y, Xue Z Y, et al. Enhanced salt tolerance of transgenic progeny of tall fescue (Festuca arundinacea) expressing a vacuolar Na+/H+ antiporter gene from Arabidopsis. Journal of Plant Physiology 2007, 164(10): 1377~1383 [19] Chen L H, Zhang B, Xu Z Q. Salt tolerance conferred by overexpression of Arabidopsis vacuolar Na+/H+ antiporter gene AtNHX1 in common buckwheat (Fagopyrum esculentum). Transgenic Res. 2008. 17(1):121~132. [20] Zhou S, Chen X, Zhang X, et al. Improved salt tolerance in tobacco plants by cotransformation of a betaine synthesis gene BADH and a vacuolar Na+/H+ antiporter gene SeNHX1. Biotechnol Lett. 2008. 30(2):369~376 [21] Qiao W H, Zhao X Y, Li W, et al. Overexpression of AeNHX1, a rootspecific vacuolar Na+/H+ antiporter from Agropyron elongatum, confers salt tolerance to Arabidopsis and Festuca plants. Plant Cell Rep. 2007. 26(9):1663~1672 [22] Brini F, Hanin M, Mezghani I,et al. Overexpression of wheat Na+/H+ antiporter TNHX1 and H+pyrophosphatase TVP1 improve salt and droughtstress tolerance in Arabidopsis thaliana plants. J Exp Bot. 2007. 58(2):301~308 [23] Huang J, Hirji R, Adam L, et al. Genetic engineering of glycinebetaine production toward enhancing stress tolerance in plants: metabolic limitation. Plant Physiology, 2000, 122(3): 747~756 [24] 张楠楠, 徐香玲. 植物抗盐机理的研究. 哈尔滨师范大学自然科学学报, 2005, 21(1):65~68 Zhang N N, Xu X L. Journal of Harbin Normal University, 2005, 21(1):65~68 [25] Sakamoto A, Murata A N. Metabolic engineering of rice leading to biosynthesis of glycinebetaine and tolerance to salt and cold. Plant Molecular Biology, 1998, 38(6): 1011~1019 [26] Zhang J, Tan W, Yang X H, et al. Plastidexpressed choline monooxygenase gene improves salt and drought tolerance through accumulation of glycine betaine in tobacco. Plant Cell Rep. 2008. 27(6):1113~1124 [27] Kumar S, Dhingra A, Daniell H. Plastidexpressed betaine aldehdye dehdyrogenase gene in carrot cultured cells, roots, and leaves confers enhanced salt tolerance. Plant Physiol. 2004. 136(1):2843~2854 [28] Li Q L, Gao X R, Yu X H, et al. Molecular cloning and characterization of betaine aldehdye dehdyrogenase gene from Suaeda liaotungensis and its use in improved tolerance to salinity in transgenic tobacco. Biotechnol Lett. 2003. 25(17):1431~1436 [29] Liang Z, Ma D, Tang L, et al. Expression of the spinach betaine aldehdye dehdyrogenase (BADH) gene in transgenic tobacco plants. Chin J Biotechnol. 1997.13(3):153~159 [30] Penna S. Building stress tolerance through overproducing trehalose in transgenic plants. Plant Science. 2003 8(8): 355~367 [31] Cortina C, CuliáezMacià F. Tomato abiotic stress enhanced tolerance by trehalose biosynthesis. Plant Science. 2005, 169(1): 75~82 [32] Ge L F, Chao D Y, Shi M, et al. Overexpression of the trehalose6phosphate phosphatase gene OsTPP1 confers stress tolerance in rice and results in the activation of stress responsive genes Planta Planta. 2008, 228:191~201 [33] Garg A K, Kim J, Owens T G, et al. Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stresses. Proc Natl Acad Sci U S A, 2002, 99(25):15898~15903 [34] 张淑红, 张恩平, 庞金安,等. 植物耐盐性研究进展. 北方园艺, 2000, 134:19~20 Zhang S H, Zhang E P, Pang J A, et al. Northern Horticulture. 2000, 134:19~20 [35] 杨少辉, 季静, 王罡等. 盐胁迫对植物影响的研究进展. 分子植物育种, 2006, 3(4):139~142 Yang S H, Ji J, Wang G, et al. MoleularPlant Breeding. 2006, 3(4):139~142

No related articles found!