Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2017, Vol. 37 Issue (12): 103-110    DOI: 10.13523/j.cb.20171215
Orginal Article     
Mechanism of Acid Tolerance in Acidophiles with pH Homeostasis and Its Potential Applications
Yue-ming ZHANG,Jian-jun QIAO()
Syn Bio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China
Download: HTML   PDF(641KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  

Acidophiles can survive in the extremely acidic environment and are most widely distributed in the bacterial and archaeal domains. They play an important role in the bioremediation and source of thermostable and acid-tolerant enzyme. Some neutral engineering strains often encountered the problem of acidification in the process of fermentation. Considering unique acid-tolerant ability of the acidophiles, if the acid-tolerant module from the acidophiles can get and applied to the neutral engineering strains, perhaps the acid-tolerant engineering strains could be built. Therefore, the common mechanisms for acid tolerance in acidophiles, including cell membrane stability and low permeability, energetic metabolism with acid tolerance, repair or protection of macromolecules and cytoplasmic buffering were overviewed, with a view to make some contributions for synthetic biology of acid-tolerant engineering strains.



Key wordsAcidophiles      Acid-tolerant module      pH homeostasis      Synthetic biology     
Received: 25 August 2017      Published: 16 December 2017
ZTFLH:  Q819  
Cite this article:

Yue-ming ZHANG,Jian-jun QIAO. Mechanism of Acid Tolerance in Acidophiles with pH Homeostasis and Its Potential Applications. China Biotechnology, 2017, 37(12): 103-110.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20171215     OR     https://manu60.magtech.com.cn/biotech/Y2017/V37/I12/103

Fig.1 Mechanism of acid tolerance in acidophiles with pH homeostasis
(a) Efflux of H+ through H+-ATPase (b) Highly stable and impermeable cell membranes that retard the influx of H+ (c~d) Abundant secondary transporters that reduce the energy demands associated with the transportation of nutrients and contribute to the pH homeostasis (e) K+-ATPases that generate a reversed Δψ with increasing the positive potential inside the cell membrane (f) DNA and protein repair systems (g) Cytoplasmic buffering that maintain the intracellular pH
[1]   Sharma A, Kawarabayasi Y, Satyanarayana T . Acidophilic bacteria and archaea: acid stable biocatalysts and their potential applications. Extremophiles, 2012,16(1):1-19.
doi: 10.1007/s00792-011-0402-3 pmid: 22080280
[2]   Dhakar K, Pandey A . Wide pH range tolerance in extremophiles: towards understanding an important phenomenon for future biotechnology. Applied Microbiology and Biotechnology, 2016,100(6):2499-2510.
doi: 10.1007/s00253-016-7285-2 pmid: 26780356
[3]   Krulwich T A, Sachs G, Padan E . Molecular aspects of bacterial pH sensing and homeostasis. Nature Reviews Microbiology, 2011,9(5):330-343.
doi: 10.1038/nrmicro2549 pmid: 21464825
[4]   徐自祥, 郑平, 孙际宾 . 全细胞网络重建与细胞工厂设计. 生物化学与生物物理进展, 2014,41(2):105-114.
doi: 10.3724/SP.J.1206.2012.00530
[4]   Xu Z X, Zheng P, Sun J B . Reconstruction of whole cell network and design of cell factory. Progress in Biochemistry and Biophysics, 2014,41(2):105-114.
doi: 10.3724/SP.J.1206.2012.00530
[5]   Nielsen A A, Der B S, Shin J , et al. Genetic circuit design automation. Science, 2016,352(6281):7341.
doi: 10.1126/science.aac7341
[6]   Liu Y, Tang H, Lin Z , et al. Mechanisms of acid tolerance in bacteria and prospects in biotechnology and bioremediation. Biotechnology Advances, 2015,33(7):1484-1492.
doi: 10.1016/j.biotechadv.2015.06.001 pmid: 26057689
[7]   Lund P, Tramonti A, De Biase D . Coping with low pH: molecular strategies in neutralophilic bacteria. FEMS Microbiology Reviews, 2014,38(6):1091-1125.
doi: 10.1111/1574-6976.12076 pmid: 24898062
[8]   Pandey R, Vischer N O, Smelt J P , et al. Intracellular pH response to weak acid stress in individual vegetative Bacillus subtilis cells. Applied and Environmental Microbiology, 2016,82(21):6463-6471.
doi: 10.1128/AEM.00861-17 pmid: 27565617
[9]   Feng S, Yang H, Wang W . System-level understanding of the potential acid-tolerance components of Acidithiobacillus thiooxidans ZJJN-3 under extreme acid stress. Extremophiles, 2015,19(5):1029-1039.
doi: 10.1007/s00792-015-0780-z pmid: 26264736
[10]   Feyhl-Buska J, Chen Y, Jia C , et al. Influence of growth phase, pH, and temperature on the abundance and composition of tetraether lipids in the thermoacidophile Picrophilus torridus. Frontiers in Microbiology, 2016,7(62):1-5.
doi: 10.3389/fmicb.2016.01323 pmid: 5003844
[11]   Sperelakis N . Cell Physiology Source Book: Essentials of Membrane Biophysics. Elsevier, 2012. 303-321.
[12]   Villanueva L, Damste J S, Schouten S . A re-evaluation of the archaeal membrane lipid biosynthetic pathway. Nature Reviews. Microbiology, 2014,12(6):438.
doi: 10.1038/nrmicro3260 pmid: 24801941
[13]   Siliakus M F, Oost J V, Kengen S W . Adaptations of archaeal and bacterial membranes to variations in temperature, pH and pressure. Extremophiles, 2017,21(4):1-20.
doi: 10.1007/s00792-016-0906-y pmid: 28013384
[14]   Mangold S, Rao Jonna V, Dopson M . Response of Acidithiobacillus caldus toward suboptimal pH conditions. Extremophiles, 2013,17(4):689-696.
doi: 10.1007/s00792-013-0553-5 pmid: 23712908
[15]   Oger P M, Cario A . Adaptation of the membrane in Archaea. Biophysical Chemistry, 2013,183(24):42.
doi: 10.1016/j.bpc.2013.06.020 pmid: 23915818
[16]   Méndezgarcía C, Peláez A I, Mesa V , et al. Microbial diversity and metabolic networks in acid mine drainage habitats. Front Microbiol, 2015,6(475):475.
doi: 10.3389/fmicb.2015.00475 pmid: 26074887
[17]   Shimada H, Nemoto N, Shida Y , et al. Effects of pH and temperature on the composition of polar lipids in Thermoplasma acidophilum HO-62. Journal of Bacteriology, 2008,190(15):5404-5411.
doi: 10.1128/JB.00415-08 pmid: 2493274
[18]   Mykytczuk N C, Trevors J T, Ferroni G D , et al. Cytoplasmic membrane fluidity and fatty acid composition of Acidithiobacillus ferrooxidans in response to pH stress. Extremophiles, 2010,14(5):427-441.
doi: 10.1007/s00792-010-0319-2 pmid: 20582711
[19]   Tyson G W, Chapman J, Hugenholtz P , et al. Community structure and metabolism through reconstruction of microbial genomes from the environment. Nature, 2004,428(6978):37-43.
doi: 10.1038/nature02340 pmid: 14961025
[20]   Keffeler E C, Payne S, Blum P . The energetic cost of improved acid resistance. The FASEB Journal, 2016,30(1):838.
[21]   Ferguson S J, Ingledew W J . Energetic problems faced by micro-organisms growing or surviving on parsimonious energy sources and at acidic pH: I. Acidithiobacillus ferrooxidans as a paradigm. Biochimica et Biophysica Acta (BBA)-Bioenergetics, 2008,1777(12):1471-1479.
doi: 10.1016/j.bbabio.2008.08.012 pmid: 18835548
[22]   Acu?a L G, Cárdenas J P, Covarrubias P C , et al. Architecture and gene repertoire of the flexible genome of the extreme acidophile Acidithiobacillus caldus. PLoS One, 2013,8(11):e78237.
doi: 10.1371/journal.pone.0078237 pmid: 3826726
[23]   Quatrini R, Lefimil C, Veloso F A , et al. Bioinformatic prediction and experimental verification of Fur-regulated genes in the extreme acidophile Acidithiobacillus ferrooxidans. Nucleic Acids Research, 2007,35(7):2153-2166.
doi: 10.1093/nar/gkm068 pmid: 1874648
[24]   Fütterer O, Angelov A, Liesegang H , et al. Genome sequence of Picrophilus torridus and its implications for life around pH 0. Proceedings of the National Academy of Sciences of the United States of America, 2004,101(24):9091-9096.
doi: 10.1073/pnas.0401356101 pmid: 15184674
[25]   Buetti-Dinh A, Dethlefsen O, Friedman R , et al. Transcriptomic analysis reveals how a lack of potassium ions increases Sulfolobus acidocaldarius sensitivity to pH changes. Microbiology, 2016,162(8):1422-1434.
doi: 10.1099/mic.0.000314 pmid: 27230583
[26]   周丹丹, 于延庆, 吴昊 , 等. 分子伴侣HdeA与底物蛋白SurA作用机制的模拟研究. 生物化学与生物物理进展, 2017,44(3):242-252.
[26]   Zhou D D, Yu Y Q, Wu H , et al. Simulation study on the mechanism of molecular chaperone HdeA and SurA. Progress in Biochemistry and Biophysics, 2017,44(3):242-252.
[27]   Golyshina O V, Tran H, Reva O N , et al. Metabolic and evolutionary patterns in the extremely acidophilic archaeon Ferroplasma acidiphilum Y(T). Scientific Reports, 2017,7(1):3682.
doi: 10.1038/s41598-017-03904-5 pmid: 5473848
[28]   Ferrer M, Golyshina O V, Beloqui A , et al. The cellular machinery of Ferroplasma acidiphilum is iron-protein-dominated. Nature, 2007,445(7123):91-94.
doi: 10.1038/nature05362 pmid: 17203061
[29]   Bhalla A, Bansal N, Kumar S , et al. Improved lignocellulose conversion to biofuels with thermophilic bacteria and thermostable enzymes. Bioresource Technology, 2013,128(1):751-759.
doi: 10.1016/j.biortech.2012.10.145 pmid: 23246299
[30]   Slonczewski J L, Fujisawa M, Dopson M , et al. Cytoplasmic pH measurement and homeostasis in bacteria and archaea. Advances in Microbial Physiology, 2009,55:1-80.
doi: 10.1016/S0065-2911(09)05501-5
[31]   Ullrich S R, González C, Poehlein A , et al. Gene loss and horizontal gene transfer contributed to the genome evolution of the extreme acidophile “Ferrovum”. Frontiers in Microbiology, 2016,7(390):797.
doi: 10.3389/fmicb.2016.00797 pmid: 27303384
[32]   Ullrich S R, Poehlein A, Tischler J S , et al. Genome analysis of the biotechnologically relevant acidophilic iron oxidising strain JA12 indicates phylogenetic and metabolic diversity within the novel genus “Ferrovum”. Plos One, 2016,11(1):1725-1735.
doi: 10.1371/journal.pone.0146832 pmid: 4725956
[33]   Li X, Kappler U, Jiang G , et al. The ecology of acidophilic microorganisms in the corroding concrete sewer environment. Frontiers in Microbiology, 2017,8.
doi: 10.3389/fmicb.2017.00683 pmid: 5397505
[34]   van Wolferen M, Ajon M, Driessen A J , et al. How hyperthermophiles adapt to change their lives: DNA exchange in extreme conditions. Extremophiles, 2013,17(4):545-563.
doi: 10.1007/s00792-013-0552-6 pmid: 23712907
[35]   Prabha R, Singh D P, Gupta S K , et al. Comparative analysis to identify determinants of changing life style in Thermosynechococcus elongatus BP-1, a thermophilic cyanobacterium. Bioinformation, 2013,9(6):299.
doi: 10.6026/97320630009299 pmid: 3607189
[36]   郝小明, 陈博, 安泰 . 工业微生物酸胁迫的耐受机制及改造途径. 生物工程学报, 2015,31(8):1151-1161.
doi: 10.13345/j.cjb.140496
[36]   Hao X M, Chen B, An T . Pathway modification of industrial microorganisms to improve acid-stress tolerance. Chinese Journal of Biotechnology, 2015,31(8):1151-1161.
doi: 10.13345/j.cjb.140496
[37]   Zhang B, Li A, Zuo F , et al. Recombinant Lactococcus lactis NZ9000 secretes a bioactive kisspeptin that inhibits proliferation and migration of human colon carcinoma HT-29 cells. Microbial Cell Factories, 2016,15(1):102-113.
doi: 10.1186/s12934-016-0506-7 pmid: 4901401
[38]   Feng F, Hu P, Chen L , et al. Display of human proinsulin on the Bacillus subtilis spore surface for oral administration. Current Microbiology, 2013,67(1):1-8.
doi: 10.1007/s00284-013-0325-6 pmid: 23380802
[39]   Zhang Y F, Liu S Y, Du Y H , et al. Genome shuffling of Lactococcus lactis subspecies lactis YF11 for improving nisin Z production and comparative analysis. Journal of Dairy Science, 2014,97(5):2528-2541.
doi: 10.3168/jds.2013-7238 pmid: 24612797
[40]   Zhang J, Caiyin Q, Feng W , et al. Enhance nisin yield via improving acid-tolerant capability of Lactococcus lactis F44. Scientific Reports, 2016,6:27973.
doi: 10.1038/srep27973 pmid: 4910042
[41]   Hao P, Liang D, Cao L , et al. Promoting acid resistance and nisin yield of Lactococcus lactis, F44 by genetically increasing D-Asp amidation level inside cell wall. Applied Microbiology & Biotechnology, 2017,101(15):6137-6153.
doi: 10.1007/s00253-017-8365-7 pmid: 28643181
[42]   赵秀丽, 周丹丹, 闫晓光 , 等. 细菌小RNA的调控及在代谢工程中的应用. 中国生物工程杂志, 2017,37(6):97-106.
[42]   Zhao X L, Zhou D D, Yan X G , et al. Regulation and application in metabolic engineering of bacterial small RNAs. China Biotechnology, 2017,37(6):97-106.
[43]   Qi J, Caiyin Q, Wu H , et al. The novel sRNA s015 improves nisin yield by increasing acid tolerance of Lactococcus lactis F44. Applied Microbiology and Biotechnology, 2017,101(16):6483-6493.
doi: 10.1007/s00253-017-8399-x pmid: 28689267
[44]   Wang B, Shao Y, Chen F . Overview on mechanisms of acetic acid resistance in acetic acid bacteria. World Journal of Microbiology and Biotechnology, 2015,31(2):255-263.
doi: 10.1007/s11274-015-1799-0 pmid: 25575804
[45]   夏凯, 朱军莉, 梁新乐 . 醋酸菌耐酸机理及其群体感应研究新进展. 微生物学报, 2017,57(3):321-332.
[45]   Xia K, Zhu J L, Liang X L . Advances in acid resistant mechanism of acetic acid bacteria and related quorum sensing system. Acta Microbiologica Sinica, 2017,57(3):321-332.
[1] MA Ning,WANG Han-jie. Advances of Optogenetics in the Regulation of Bacterial Production[J]. China Biotechnology, 2021, 41(9): 101-109.
[2] HUANG Huan-bang,WU Yang,YANG You-hui,WANG Zhao-guan,QI Hao. Progress in Incorporation of Non-canonical Amino Acid Based on Archaeal Tyrosyl-tRNA Synthetase[J]. China Biotechnology, 2021, 41(9): 110-125.
[3] GUO Man-man,TIAN Kai-ren,QIAO Jian-jun,LI Yan-ni. Application of Phage Recombinase Systems in Synthetic Biology[J]. China Biotechnology, 2021, 41(8): 90-102.
[4] DONG Shu-xin,QIN Lei,LI Chun,LI Jun. Transcription Factor Engineering Harnesses Metabolic Networks to Meet Efficient Production in Cell Factories[J]. China Biotechnology, 2021, 41(4): 55-63.
[5] ZHENG Yi,GUO Shi-ying,SUI Feng-xiang,YANG Qi-yu,WEI Ya-xuan,LI Xiao-yan. Applications of Quorum Sensing Systems in Synthetic Biology[J]. China Biotechnology, 2021, 41(11): 100-109.
[6] CHA Ya-ping, ZHU Mu-zi, LI Shuang. Research Progress on In Vivo Continuous Directed Evolution[J]. China Biotechnology, 2021, 41(1): 42-51.
[7] GUO Er-peng, ZHANG Jian-zhi, SI Tong. Recent Advances in the High-throughput Engineering of Lanthipeptides[J]. China Biotechnology, 2021, 41(1): 30-41.
[8] CHANG Lu, HUANG Jiao-fang, DONG Hao, ZHOU Bin-hui, ZHU Xiao-juan, ZHUANG Ying-ping. A Review on Bioremediation and Detection of Heavy Metal Pollution by Synthetic Biological Engineered Microorganisms and Biofilms[J]. China Biotechnology, 2021, 41(1): 62-71.
[9] RAO Hai-mi,LIANG Dong-mei,LI Wei-guo,QIAO Jian-jun,CAI YIN Qing-ge-le. Advances in Synthetic Biology of Fungal Aromatic Polyketides[J]. China Biotechnology, 2020, 40(9): 52-61.
[10] ZHANG Yu-ting,LI Wei-guo,LIANG Dong-mei,QIAO Jian-jun,CAI YIN Qing-ge-le. Research Progress in Synthetic Biology of P450s in Terpenoid Synthesis[J]. China Biotechnology, 2020, 40(8): 84-96.
[11] WANG Zhen,LI Xia,YUAN Ying-jin. Advances in Production of Caffeic Acid and Its Ester Derivatives in Heterologous Microbes[J]. China Biotechnology, 2020, 40(7): 91-99.
[12] SUN Qing,LIU De-hua,CHEN Zhen. Research Progress of Methanol Utilization and Bioconversion[J]. China Biotechnology, 2020, 40(10): 65-75.
[13] LIU Jin-cong,LIU Xue,YU Hong-jian,ZHAO Guang-rong. Recent Advances in Microbial Production of Phloretin and Its Glycosides[J]. China Biotechnology, 2020, 40(10): 76-84.
[14] Hua-ling XIE,Dong-qiao LI,Pei-juan CHI,Yan-ping YANG. An Analysis on the Competition of Patents in Synthetic Biology[J]. China Biotechnology, 2019, 39(4): 114-123.
[15] Si-li YU,Xue LIU,Zhao-yu ZHANG,Hong-jian YU,Guang-rong ZHAO. Advances of Betalains Biosynthesis and Metabolic Regulation[J]. China Biotechnology, 2018, 38(8): 84-91.