Please wait a minute...

中国生物工程杂志

China Biotechnology
China Biotechnology  2017, Vol. 37 Issue (6): 124-133    DOI: 10.13523/j.cb.20170618
    
Research Progress on Utilization of Lignocellulosic Biomass by Microorganisms
MA Ze-lin1,2,3, LIU Jia-heng1,2,3, HUANG Xu4, CAIYIN Qing-gele1,2, ZHU Hong-ji1,2
1. Department of Pharmaceutical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China;
2. Key Laboratory of Systems Bioengineering, Ministry of Education, Tianjin 300072, China;
3. Syn Bio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin 300072, China;
4. China Oil & Foodstuffs Corporation(COFCO Nutrition and Health Research Institute, Beijing 102209, China
Download: HTML   PDF(603KB) HTML
Export: BibTeX | EndNote (RIS)      

Abstract  Lignocellulosic biomass, one of the most abundant resources in the world can be converted into value-added bio-chemicals by microbial fermentation. Compared with the traditionally used edible biomass materials, lignocelluloses fermentation by microorganism encounters the following key problems:developing economically efficient pretreatment of lignocellulose, increasing the microbial utilization of the second most abundant sugar xylose in lignocellulose hydrolysates, enhancing the microbial comprehensive utilization of mixed sugars and improving the microbial tolerance to inhibitors in lignocellulose hydrolysates, such as furfural and acetic acid. New breakthroughs have been made on the research of these problems recent years. The latest research advances were summarized to address these issues and prospects for future development of commercial microbial utilization of lignocellulose were suggested.

Key wordsLignocellulose      Xylose      Chemicals      Carbon catabolite repression      Tolerance     
Received: 20 March 2017      Published: 25 June 2017
ZTFLH:  Q81  
Cite this article:

MA Ze-lin, LIU Jia-heng, HUANG Xu, CAIYIN Qing-gele, ZHU Hong-ji. Research Progress on Utilization of Lignocellulosic Biomass by Microorganisms. China Biotechnology, 2017, 37(6): 124-133.

URL:

https://manu60.magtech.com.cn/biotech/10.13523/j.cb.20170618     OR     https://manu60.magtech.com.cn/biotech/Y2017/V37/I6/124

[1] Graham-Rowe D. Agriculture:Beyond food versus fuel. Nature, 2011, 474(7352):S6-S8.
[2] 李景明, 薛梅. 中国生物质能利用现状与发展前景. 农业科技管理, 2010, 29(2):1-4. Li J M, Xue M. Present situation and prospect of biomass energy utilization in China. Management of Agricultural Science and Technology, 2010, 29(2):1-4.
[3] Li C, Cheng G, Balan V, et al. Influence of physico-chemical changes on enzymatic digestibility of ionic liquid and AFEX pretreated corn stover. Bioresource Technology, 2011, 102(13):6928-6936.
[4] Mosier N, Wyman C, Dale B, et al. Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresource Technology, 2005, 96(6):673-686.
[5] Sun Y, Cheng J. Hydrolysis of lignocellulosic materials for ethanol production:a review. Bioresource Technology, 2002, 83(1):1-11.
[6] Papapetridis I, Dijk M, Dobbe A P, et al. Improving ethanol yield in acetate-reducing Saccharomyces cerevisiae by cofactor engineering of 6-phosphogluconate dehydrogenase and deletion of ALD6. Microbial Cell Factories, 2016, 15(1):67-83.
[7] Shaw A J, Podkaminer K K, Desai S G, et al. Metabolic engineering of a thermophilic bacterium to produce ethanol at high yield. Proceedings of the National Academy of Sciences, 2008, 105(37):13769-13774.
[8] Gao D, Chundawat S P, Sethi A, et al. Increased enzyme binding to substrate is not necessary for more efficient cellulose hydrolysis. Proceedings of the National Academy of Sciences, 2013, 110(27):10922-10927.
[9] Edwards M C, Henriksen E D, Yomano L P, et al. Addition of genes for cellobiase and pectinolytic activity in Escherichia coli for fuel ethanol production from pectin-rich lignocellulosic biomas. Applied and Environmental Microbiology, 2011, 77(15):5184-5191.
[10] Galbe M, Zacchi G. Pretreatment:the key to efficient utilization of lignocellulosic materials. Biomass and Bioenergy, 2012, 46(12):70-78.
[11] Viikari L, Vehmaanperä J, Koivula A. Lignocellulosic ethanol:from science to industry. Biomass and Bioenergy, 2012, 46(11):13-24.
[12] Ravindran R, Jaiswal A K. A comprehensive review on pre-treatment strategy for lignocellulosic food industry waste:challenges and opportunities. Bioresource Technology, 2016, 1(199):92-102.
[13] Qiao J J, Zhang Y F, Sun L F, et al. Production of spent mushroom substrate hydrolysates useful for cultivation of Lactococcus lactis by dilute sulfuric acid, cellulase and xylanase treatment. Bioresource Technology, 2011, 102(17):8046-8051.
[14] Zhu H J, Liu J H, Sun L F, et al. Combined alkali and acid pretreatment of spent mushroom substrate for reducing sugar and biofertilizer production. Bioresource Technology, 2013, 136(5):257-266.
[15] 赵鑫. 木质纤维素联合预处理法的研究进展. 山东化工, 2016, 45(11):39-41. Zhao X. The Review of combination pretreatment methods of lignocellulosic. Shandong Chemical Industry, 2016,45(11):39-41.
[16] Vanneste J, Ennaert T, Vanhulsel A, et al. Unconventional Pretreatment of lignocellulose with low temperature plasma. ChemSusChem, 2017,10(1):14-31.
[17] Nogué V S, Karhumaa K. Xylose fermentation as a challenge for commercialization of lignocellulosic fuels and chemicals. Biotechnology Letters, 2015, 37(4):761-772.
[18] Bundaleska N, Tatarova E, Dias F M, et al. Air-water 'tornado'-type microwave plasmas applied for sugarcane biomass treatment. Journal of Physics D:Applied Physics, 2013, 47(5):055201.
[19] Benoit M, Rodrigues A, Vigier K D, et al. Combination of ball-milling and non-thermal atmospheric plasma as physical treatments for the saccharification of microcrystalline cellulose. Green Chemistry, 2012, 14(8):2212-2215.
[20] Travaini R, Martín-Juárez J, Lorenzo-Hernando A, et al. Ozonolysis:An advantageous pretreatment for lignocellulosic biomass revisited. Bioresource Technology, 2016, 199(1):2-12.
[21] Li C, Wang L, Chen Z, et al. Ozonolysis pretreatment of maize stover:The interactive effect of sample particle size and moisture on ozonolysis process. Bioresource Technology, 2015, 183(5):240-247.
[22] Bule M V, Gao A H, Hiscox B, et al. Structural modification of lignin and characterization of pretreated wheat straw by ozonation. Journal of Agricultural and Food Chemistry, 2013, 61(16):3916-3925.
[23] Amorim J, Oliveira C, Souza-Corrêa J A, et al. Treatment of sugarcane bagasse lignin employing atmospheric pressure microplasma jet in argon. Plasma Processes and Polymers, 2013, 10(8):670-678.
[24] Wiman M, Dienes D, Hansen M A, et al. Cellulose accessibility determines the rate of enzymatic hydrolysis of steam-pretreated spruce. Bioresource Technology, 2012, 126(12):208-215.
[25] Rana V, Eckard A D, Teller P, et al. On-site enzymes produced from Trichoderma reesei RUT- C30 and Aspergillus saccharolyticus for hydrolysis of wet exploded corn stover and loblolly pine. Bioresource Technology, 2014, 154(2):282-289.
[26] Nghiem N P, Kim T H, Yoo C G, et al. Enzymatic fractionation of SAA-pretreated barley straw for production of fuel ethanol and astaxanthin as a value-added co-product. Applied Biochemistry and Biotechnology, 2013, 171(2):341-351.
[27] Han S H, Cho D H, Kim Y H, et al. Biobutanol production from 2-year-old willow biomass by acid hydrolysis and acetone-butanol-ethanol fermentation. Energy, 2013, 61(11):13-17.
[28] Zeng A P, Sabra W. Microbial production of diols as platform chemicals:recent progresses. Current Opinion in Biotechnology, 2011, 22(6):749-757.
[29] Kuhad R C, Gupta R, Khasa Y P, et al. Bioethanol production from pentose sugars:Current status and future prospects. Renewable and Sustainable Energy Reviews, 2011, 15(9):4950-4962.
[30] Scalcinati G, Otero J M, Van Vleet J R, et al. Evolutionary engineering of Saccharomyces cerevisiae for efficient aerobic xylose consumption. FEMS Yeast Research, 2012, 12(5):582-597.
[31] Tanaka K, Komiyama A, Sonomoto K, et al. Two different pathways for D-xylose metabolism and the effect of xylose concentration on the yield coefficient of L-lactate in mixed-acid fermentation by the lactic acid bacterium Lactococcus lactis IO- 1. Applied Microbiology and Biotechnology, 2002, 60(10):160-167.
[32] Chang S F, Ho N W. Cloning the yeast xylulokinase gene for the improvement of xylose fermentation. Applied Biochemistry and Biotechnology, 1988, 17(1):313-318.
[33] N lling J, Breton G, Omelchenko M V, et al. Genome sequence and comparative analysis of the solvent-producing bacterium Clostridium acetobutylicum. Journal of Bacteriology, 2001, 183(16):4823-4838.
[34] Jin L, Zhang H, Chen L, et al. Combined overexpression of genes involved in pentose phosphate pathway enables enhanced D-xylose utilization by Clostridium acetobutylicum. Journal of Biotechnology, 2014, 3(173):7-9.
[35] Zhou H, Cheng J, Wang B L, et al. Xylose isomerase overexpression along with engineering of the pentose phosphate pathway and evolutionary engineering enable rapid xylose utilization and ethanol production by Saccharomyces cerevisiae. Metabolic Engineering, 2012, 14(6):611-622.
[36] Yim H, Haselbeck R, Niu W, et al. Metabolic engineering of Escherichia coli for direct production of 1, 4-butanediol. Nature Chemical Biology, 2011, 7(7):445-452.
[37] Weimberg R. Pentose oxidation by Pseudomonas fragi. Journal of Biological Chemistry, 1961, 236(3):629-635.
[38] Radek A, Krumbach K, Gätgens J, et al. Engineering of Corynebacterium glutamicum for minimized carbon loss during utilization of D-xylose containing substrates. Journal of Biotechnology, 2014, 192(12):156-160.
[39] Liu H, Lu T. Autonomous production of 1, 4-butanediol via a de novo biosynthesis pathway in engineered Escherichia coli. Metabolic Engineering, 2015, 29(5):135-141.
[40] Tai Y S, Xiong M, Jambunathan P, et al. Engineering nonphosphorylative metabolism to generate lignocellulose-derived products. Nature Chemical Biology, 2016, 12(2):247-253.
[41] Gírio F M, Carvalheiro F, Duarte L C, et al. Deconstruction of the hemicellulose fraction from lignocellulosic materials into simple sugars d-Xylitol. Berlin Heidelberg:Springer, 2012. 3-37.
[42] G rke B, Stülke J. Carbon catabolite repression in bacteria:many ways to make the most out of nutrients. Nature Reviews Microbiology, 2008, 6(8):613-624.
[43] Deutscher J, Francke C, Postma P W. How phosphotransferase system-related protein phosphorylation regulates carbohydrate metabolism in bacteria. Microbiology and Molecular Biology Reviews, 2006, 70(4):939-1031.
[44] Jarmander J, Hallstr? m B M, Larsson G. Simultaneous uptake of lignocellulose-based monosaccharides by Escherichia coli. Biotechnology and Bioengineering, 2014, 111(6):1108-1115.
[45] Escalante A, Cervantes A S, Gosset G, et al. Current knowledge of the Escherichia coli phosphoenolpyruvate-carbohydrate phosphotransferase system:peculiarities of regulation and impact on growth and product formation. Applied Microbiology and Biotechnology, 2012, 94(6):1483-1494.
[46] Nakashima N, Tamura T. A new carbon catabolite repression mutation of Escherichia coli, mlc, and its use for producing isobutanol. Journal of Bioscience and Bioengineering, 2012, 114(1):38-44.
[47] Tsakraklides V, Shaw A J, Miller B B, et al. Carbon catabolite repression in Thermoanaerobacterium saccharolyticum. Biotechnology for Biofuels, 2012, 5(1):85.
[48] Cirino P C, Chin J W, Ingram L O. Engineering Escherichia coli for xylitol production from glucose-xylose mixtures. Biotechnology and Bioengineering, 2006, 95(6):1167-1176.
[49] Groff D, Benke P I, Batth T S, et al. Supplementation of intracellular XylR leads to coutilization of hemicellulose sugars. Applied and Environmental Microbiology, 2012, 78(7):2221-2229.
[50] Wu Y, Yang Y, Ren C, et al. Molecular modulation of pleiotropic regulator CcpA for glucose and xylose coutilization by solvent-producing Clostridium acetobutylicum. Metabolic Engineering, 2015, 3(28):169-179.
[51] Jojima T, Omumasaba C A, Inui M, et al. Sugar transporters in efficient utilization of mixed sugar substrates:current knowledge and outlook. Applied Microbiology and Biotechnology, 2010, 85(3):471-480.
[52] Sun L, Zeng X, Yan C, et al. Crystal structure of a bacterial homologue of glucose transporters GLUT1-4. Nature, 2012, 490(7420):361-366.
[53] Hector R E, Qureshi N, Hughes S R, et al. Expression of a heterologous xylose transporter in a Saccharomyces cerevisiae strain engineered to utilize xylose improves aerobic xylose consumption. Applied Microbiology and Biotechnology, 2008, 80(4):675-684.
[54] Khankal R, Chin J W, Cirino P C. Role of xylose transporters in xylitol production from engineered Escherichia coli. Journal of Biotechnology, 2008, 134(3):246-252.
[55] Jeon W Y, Yoon B H, Ko B S, et al. Xylitol production is increased by expression of codon-optimized Neurospora crassa xylose reductase gene in Candida tropicalis. Bioprocess and Biosystems Engineering, 2012, 35(1-2):191-198.
[56] Almeida J R, Bertilsson M, Gorwa-Grauslund M F, et al. Metabolic effects of furaldehydes and impacts on biotechnological processes. Applied Microbiology and Biotechnology, 2009, 82(4):625.
[57] Taylor M P, Mulako I, Tuffin M, et al. Understanding physiological responses to pre-treatment inhibitors in ethanologenic fermentations. Biotechnology Journal, 2012, 7(9):1169-1181.
[58] Heer D, Sauer U. Identification of furfural as a key toxin in lignocellulosic hydrolysates and evolution of a tolerant yeast strain. Microbial Biotechnology, 2008, 1(6):497-506.
[59] Hasunuma T, Sung K, Sanda T, et al. Efficient fermentation of xylose to ethanol at high formic acid concentrations by metabolically engineered Saccharomyces cerevisiae. Applied Microbiology and Biotechnology, 2011, 90(3):997-1004.
[60] Li Y C, Gou Z X, Liu Z S, et al. Synergistic effects of TAL1 over-expression and PHO13 deletion on the weak acid inhibition of xylose fermentation by industrial Saccharomyces cerevisiae strain. Biotechnology Letters, 2014, 36(10):2011-2021.
[61] Hasunuma T, Ismail K S, Nambu Y, et al. Co-expression of TAL1 and ADH1 in recombinant xylose-fermenting Saccharomyces cerevisiae improves ethanol production from lignocellulosic hydrolysates in the presence of furfural. Journal of Bioscience and Bioengineering, 2014, 117(2):165-169.
[62] Royce L A, Yoon J M, Chen Y, et al. Evolution for exogenous octanoic acid tolerance improves carboxylic acid production and membrane integrity. Metabolic Engineering, 2015, 29(5):180-188.
[63] Wallace-Salinas V, Gorwa-Grauslund M F. Adaptive evolution of an industrial strain of Saccharomyces cerevisiae for combined tolerance to inhibitors and temperature. Biotechnology for Biofuels, 2013, 6(1):151.
[64] Dafoe J T, Daugulis A J. In situ product removal in fermentation systems:improved process performance and rational extractant selection. Biotechnology Letters, 2014, 36(3):443-460.
[65] Klaassen P, Kolen C, Van Maris A, et al. Yeast strains engineered to produce ethanol from acetate. Patent WO2014033019 A1. 2014-3-6.
[66] Zelle R M, Shaw I V, van Dijken J P. Method for acetate consumption during ethanolic fermentaion of cellulosic feedstocks. U.S. Patent, 14/075,846. 2013-11-8.
[67] Hou J, Shen Y, Jiao C, et al. Characterization and evolution of xylose isomerase screened from the bovine rumen metagenome in Saccharomyces cerevisiae. Journal of Bioscience and Bioengineering, 2016, 121(2):160-165.
[68] Meijnen J P, de Winde J H, Ruijssenaars H J. Establishment of oxidative D-xylose metabolism in Pseudomonas putida S12. Applied and Environmental Microbiology, 2009, 75(9):2784-2791.
[69] Liu H, Ramos K R, Valdehuesa K N, et al. Biosynthesis of ethylene glycol in Escherichia coli. Applied Microbiology and Biotechnology, 2013, 97(8):3409-3417.
[70] Uppugundla N, da Costa Sousa L, Chundawat S P, et al. A comparative study of ethanol production using dilute acid, ionic liquid and AFEXTM pretreated corn stover. Biotechnology for Biofuels, 2014, 7(1):72.
[71] Hasunuma T, Ismail K S, Nambu Y, et al. Co-expression of TAL1 and ADH1 in recombinant xylose-fermenting Saccharomyces cerevisiae improves ethanol production from lignocellulosic hydrolysates in the presence of furfural. Journal of Bioscience and Bioengineering, 2014, 117(2):165-169.
[72] Smith J, Van Rensburg E, G? rgens J F. Simultaneously improving xylose fermentation and tolerance to lignocellulosic inhibitors through evolutionary engineering of recombinant Saccharomyces cerevisiae harbouring xylose isomerase. BMC Biotechnology, 2014, 14(1):41-58.
[73] Bai W, Tai Y S, Wang J, et al. Engineering nonphosphorylative metabolism to synthesize mesaconate from lignocellulosic sugars in Escherichia coli. Metabolic Engineering, 2016, 38(11):285-292.
[74] Jeon W Y, Shim W Y, Lee S H, et al. Effect of heterologous xylose transporter expression in Candida tropicalis on xylitol production rate. Bioprocess and Biosystems Engineering, 2013, 36(6):809-817.
[75] Oh E J, Ha S J, Kim S R, et al. Enhanced xylitol production through simultaneous co-utilization of cellobiose and xylose by engineered Saccharomyces cerevisiae. Metabolic Engineering, 2013, 15(1):226-234.
[76] Nair N U, Zhao H. Selective reduction of xylose to xylitol from a mixture of hemicellulosic sugars. Metabolic Engineering, 2010, 12(5):462-468.
[77] Sasaki M, Jojima T, Inui M, et al. Xylitol production by recombinant Corynebacterium glutamicum under oxygen deprivation. Applied Microbiology and Biotechnology, 2010, 86(4):1057-1066.
[78] Liu H, Hu H R, Jin Y H, et al. Co-fermentation of a mixture of glucose and xylose to fumaric acid by Rhizopus arrhizus RH 7-13-9# . Bioresource Technology,2017,223(6):30-33.
[79] Wei N, Quarterman J, Kim S R, et al. Enhanced biofuel production through coupled acetic acid and xylose consumption by engineered yeast. Nature Communications, 2013, 4(8):2580.
[80] Zhang J G, Liu X Y, He X P, et al. Improvement of acetic acid tolerance and fermentation performance of Saccharomyces cerevisiae by disruption of the FPS1 aquaglyceroporin gene. Biotechnology Letters, 2011, 33(2):277-284.
[81] Heer D, Heine D, Sauer U. Resistance of Saccharomyces cerevisiae to high concentrations of furfural is based on NADPH-dependent reduction by at least two oxireductases. Applied and Environmental Microbiology, 2009, 75(24):7631-7638.
[82] Madhavan A, Srivastava A, Kondo A, et al. Bioconversion of lignocellulose-derived sugars to ethanol by engineered Saccharomyces cerevisiae. Critical Reviews in Biotechnology, 2012, 32(1):22-48.
[83] Subtil T, Boles E. Competition between pentoses and glucose during uptake and catabolism in recombinant Saccharomyces cerevisiae. Biotechnology for Biofuels, 2012, 5(1):14.
[84] Bellissimi E, Van Dijken J P, Pronk J T, et al. Effects of acetic acid on the kinetics of xylose fermentation by an engineered, xylose-isomerase-based Saccharomyces cerevisiae strain. FEMS Yeast Research, 2009, 9(3):358-364.
[1] GAO Yin-ling,ZHANG Feng-jiao,ZHAO Gui-zhong,ZHANG Hong-sen,WANG Feng-qin,SONG An-dong. Research Progress of Itaconic Acid Fermentation[J]. China Biotechnology, 2021, 41(5): 105-113.
[2] BAI Jing-yu,LIN Xiao-feng,YIN Zheng-qing. Analysis of the Current Situation and Development Trend of Global Biotechnology Research Based on Bibliometrics[J]. China Biotechnology, 2020, 40(7): 100-109.
[3] ZHANG Ye,WANG Ji-ping,SU Tian-ming,HE Tie-guang,WANG Jin,ZENG Xiang-yang. Research Progress on Degradation of Lignocellulosic Biomass by Screening Microorganisms[J]. China Biotechnology, 2020, 40(6): 100-105.
[4] ZHANG Xiao-mao,GUO Jing-han,HONG Jie-fang,LU Hai-yan,DING Juan-juan,ZOU Shao-lan,FAN Huan. Evaluation of UPR Response in Yeast by Using UPRE-lac Z as a Reporter Gene[J]. China Biotechnology, 2020, 40(10): 1-9.
[5] Xue-ting HE,Min-hua ZHANG,Jie-fang HONG,Yuan-yuan MA. Research Progress on Butanol-Tolerant Strain and Tolerance Mechanism of Escherichia coli[J]. China Biotechnology, 2018, 38(9): 81-87.
[6] Shi-ying DANG,Yi MA,Tao WEN,Xing XIAO,An HONG. Preparation of Nanometer Composite Peptide SCM and Its Therapeutic Effect on Type II Diabetes[J]. China Biotechnology, 2018, 38(5): 17-23.
[7] Meng-tong QIN,Jing HU,Guan-hua LI. Recent Developments and Future Prospect of Biological Pretreatment[J]. China Biotechnology, 2018, 38(5): 85-91.
[8] Min YAO,Shu-hua ZHU,Fo-sheng LI,Shi-yan ZHANG,Lin TANG. Analysis of Salt Tolerance and Insect Resistance of Transgenic Tobacco Expressing AtCYSa from Arabidopsis[J]. China Biotechnology, 2018, 38(4): 8-16.
[9] Jun HUANG,Ren-zhi WU,Qi LU,Zhi-long LU. Research Progress on Xylose Transporters of Saccharomyces cerevisiae[J]. China Biotechnology, 2018, 38(2): 109-115.
[10] YAO Chang-hong, WU Pei-chun, CAO Xu-peng, LIU Jiao, JIANG Jun-peng, XUE Song. Comparative Characterization of Two Arthrospira Strains Isolated from Full-scale Raceway Pond[J]. China Biotechnology, 2017, 37(5): 28-37.
[11] WANG De-hua, MA Yi, HAN Lei, XIAO Xing, LI Yan-wei, DANG Shi-ying, FAN Zhi-yong, WEN Tao, HONG An. Preparation of Novel Recombinant PACAP Derivative MPL-2 and Its Effect on Anti-type 2 Diabetes Mellitus[J]. China Biotechnology, 2017, 37(5): 59-65.
[12] CHEN Zhen, CHEN Xian-zhong, ZHANG Li-hua, WANG Jun-hua, SHEN Wei, FAN You. Metabolic Engineering of Candida tropicalis for Xyltiol Production from Xylose Mother Liquor[J]. China Biotechnology, 2017, 37(5): 66-75.
[13] CHENG Ke-li, LIU Xiao, LI Su-xia. Study on High-level Expression and Characterization of a V125T V8 Protease Mutant with Tolerance to SDS[J]. China Biotechnology, 2017, 37(4): 56-67.
[14] SHI Li-ping, JI Jing, WANG Gang, JIN Chao, XIE Chao, DU Xi-long, GUAN Chung-feng, ZHANG Lie, LI Chen. The Expression and Analysis of Terpene Synthesis Related Genes in Maize under the Condition of Salt Stress[J]. China Biotechnology, 2016, 36(8): 31-37.
[15] LI Shuai, SHAN Hong-yu, DONG Xiao-yu, GUO Chang-hong, GUO Dong-lin. The Role of Phosphoinositide Phospholipase C in Expression Regulation of DREB2[J]. China Biotechnology, 2016, 36(4): 110-115.