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Progress in the Studies of Antisense Technologies

WANG Bo CHEN Mei hong
(National Laboratory of M edical Biobgy, Institute of Basic Medical Science,
Peking Union Medical College & Chinese A cademy of M edical Science, Beijing 100005, China)

Abstract Antisense technologies inhibit the expression of a target gene in a sequence specific manner, with DNA
or RNA molecules binding complementally to the target mRNA via Watsorr Crick base pairing. As a result, the target
mRNA is either degraded or blocked for translaion by various mechanisms. Compared with other loss of function
studying methods such as gene knodkout, antisense technologies exhibit advantages such as low cost, short period, and
easy operation etc. This review briefly summarizes the latest progress and problems in antisense techmologies that are in
common use, and compares the advantages and disadvantages of these technologies.

Key words Antisense techmologies  Antisense oligonucleotides  Ribozymes DNAzymes RNA interference
siRNA

Regulatory Mechanism of Secondary Metabolism in Streptomyces

ZHANG Yarr juan HONG Bin
(Institute of Medicinal Biotechnology, Chinese A cademy of Medical Sciences and Peking Union Medical College, Beijing 100050, China)

Abstract  Streptomyces is Granr positive, filamentous, soil inhabiting bacteria, which is characterized by the
complex morphological differentiation and the ability to produce various valuable secondary metabolites, including
compounds used as antimicrobial, antiviral, antitumor, antiparasitic and immunosuppressive drugs. There are huge and
complicated regulatory networks of secondary metabolism in Sireptomyces . These networks can be classified into three
levels in genetics. The lowest level is pathway specific regulation. The regulatory genes are cluster linked and regulate
transcription of antibiotic biosynthetic genes. This regulation is growtlr phase dependent. The middle one is pleiotropic
regulation. ¥ butyrolactone is a low weight molecule, which is expeded to be the “ hormone” of Streptomyces. The
signalling systems in which ¥ butyrolactone is involved cnirol more than one pathway of secondary metabolism and/ or
morphological differentiation. The highest one is global regulation, regulating both cell differentiation and sewndary
metaholites production. These genes usually lie beyond the biosynthetic gene cluster. Two- component-type signal
transduction systems are global regulators in Streptomyces. With the new developed technologies, including microarray
applying to the research of the secondary metabolism regulation, more regulatory networks will be elucidated. These
knowledge will provide the basis for elevating the yields of secondary metabolites by the method of metabolic
engineering, optimizing their structure and investigating more novel and useful agents.

Key words  Streptomyces  Secondary metabolism Regulatory mechanism



