Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2021, Vol. 41 Issue (6): 129-135    DOI: 10.13523/j.cb.2106007
新冠病毒检测与药物研发     
抗新型冠状病毒单克隆中和抗体药物研发进展*
史瑞,严景华()
中国科学院微生物研究所 北京 100101
Research Progress of Neutralizing Antibody Drugs against SARS-CoV-2
SHI Rui,YAN Jing-hua()
Institute of Microbiology, Chinese Academy of Sciences, Beijing 100101,China
 全文: PDF(426 KB)   HTML
摘要:

随着新型冠状病毒肺炎(COVID-19)疫情在全球的不断蔓延,开发有效的治疗药物迫在眉睫。中和抗体作为最有希望的新型冠状病毒特异性治疗药物,已经在临床研究中展现很好的治疗效果。对抗新冠病毒单克隆中和抗体药物研发的进展、涉及的主要技术和主要临床试验结果进行了总结,以期为包括COVID-19在内的新发、突发传染病中和抗体药物研发提供参考。

关键词: 新型冠状病毒中和抗体药物临床试验    
Abstract:

With the continuous spread of the COVID-19 epidemic, it is urgent to develop effective therapeutic drugs. Neutralizing antibodies, as the most promising specific therapeutics against SARS-CoV-2, are proved to be effective in clinical trials. The research progress of neutralizing antibodies were summarized, including the involved technologies, and the clinical results in order to provide benefits for developing neutralizing antibodies in emerging infectious diseases including COVID-19.

Key words: SARS-CoV-2    Neutralizing antibodies    Clinical trial
收稿日期: 2021-05-14 出版日期: 2021-07-06
ZTFLH:  Q819  
基金资助: * 国家重点研发计划(2020YFC0848300)
通讯作者: 严景华     E-mail: yanjh@im.ac.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
史瑞
严景华

引用本文:

史瑞,严景华. 抗新型冠状病毒单克隆中和抗体药物研发进展*[J]. 中国生物工程杂志, 2021, 41(6): 129-135.

SHI Rui,YAN Jing-hua. Research Progress of Neutralizing Antibody Drugs against SARS-CoV-2. China Biotechnology, 2021, 41(6): 129-135.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2106007        https://manu60.magtech.com.cn/biotech/CN/Y2021/V41/I6/129

公司 产品 抗体类型 临床阶段 试验号
再生元制药/NIAID REGN-COV2 靶向S蛋白的人IgG1单克隆抗体 临床II/III期 NCT04452318
NCT04426695
NCT04425629
礼来制药/AbCellera/NIH 巴尼韦单抗 靶向S蛋白的人IgG1单克隆抗体 临床II/III期 NCT04497987
NCT04634409
NCT04518410
礼来制药/中国科学院微生物研究所/上海君实生物 埃特司韦单抗/巴尼韦单抗 靶向S蛋白的人IgG1单克隆抗体 临床II/III期 NCT04427501
Vir Biotechnology/GSK VIR-7831/GSK4182136 靶向S蛋白的人IgG1单克隆抗体 临床III期 NCT04545060
AstraZeneca/Vanderbilt AZD8895/AZD1061 靶向S蛋白的人IgG1单克隆抗体 临床III期 NCT04507256
Celltrion CT-P59 靶向S蛋白抗原表位的人单克隆抗体 临床III期 NCT04525079
中国科学院微生物研究所/上海君实生物 埃特司韦单抗(JS016) 靶向S蛋白抗原表位的人单克隆抗体 临床II期 NCT04441918
百济神州/北京丹序生物/北京大学 BGB-DXP593 靶向S蛋白抗原表位的人IgG1单克隆抗体 临床II期 NCT04551898
NCT04532294
Tychan TY027 - 临床I期 NCT04429529
腾盛博药/清华大学 BRII-196/BRII-198 靶向S蛋白抗原表位的人单克隆抗体 临床I期 NCT04479631
NCT04479644
神州细胞工程/中国科学院 SCTA01 靶向S蛋白抗原表位的人源化单克隆抗体 临床I期 NCT04483375
迈威生物 MW33 靶向S蛋白抗原表位的人单克隆抗体 临床I期 NCT05433048
Sorrento/Mount Sinai COVI-GUARD/STI-1499 靶向S蛋白S1亚基的人单克隆抗体 临床I期 NCT04454398
复宏汉霖 HLX70 靶向S蛋白抗原表位的人单克隆抗体 临床I期 NCT04561076
表1  进入临床研究阶段的重要抗新型冠状病毒中和抗体药物汇总
[1] Hu B, Guo H, Zhou P, et al. Characteristics of SARS-CoV-2 and COVID-19. Nat Rev Microbiol, 2021, 19(3):141-154.
doi: 10.1038/s41579-020-00459-7
[2] Wiersinga W J, Rhodes A, Cheng A C, et al. Pathophysiology, transmission, diagnosis, and treatment of coronavirus disease 2019 (COVID-19). JAMA, 2020, 324(8):782.
doi: 10.1001/jama.2020.12839 pmid: 32648899
[3] Samrat S K, Tharappel A M, Li Z, et al. Prospect of SARS-CoV-2 spike protein: Potential role in vaccine and therapeutic development. Virus Research, 2020, 288:198141.
doi: 10.1016/j.virusres.2020.198141
[4] Wang Q H, Zhang Y F, Wu L L, et al. Structural and functional basis of SARS-CoV-2 entry by using human ACE2. Cell, 2020, 181(4): 894-904.e9.
doi: 10.1016/j.cell.2020.03.045
[5] Costa L B, Perez L G, Palmeira V A, et al. Insights on SARS-CoV-2 molecular interactions with the renin-angiotensin system. Frontiers in Cell and Developmental Biology, 2020, 8:559841. DOI: 10.3389/fcell.2020.559841.
doi: 10.3389/fcell.2020.559841
[6] Ehrhardt S A, Zehner M, Krähling V, et al. Polyclonal and convergent antibody response to Ebola virus vaccine rVSV-ZEBOV. Nature Medicine, 2019, 25(10):1589-1600.
doi: 10.1038/s41591-019-0602-4
[7] Domachowske J B, Khan A A, Esser M T, et al. Safety, tolerability and pharmacokinetics of MEDI8897, an extended half-life single-dose respiratory syncytial virus prefusion F-targeting monoclonal antibody administered as a single dose to healthy preterm infants. Pediatric Infectious Disease Journal, 2018, 37(9):886-892.
doi: 10.1097/INF.0000000000001916
[8] Gaudinski M R, Coates E E, Novik L, et al. Safety, tolerability, pharmacokinetics, and immunogenicity of the therapeutic monoclonal antibody MAb114 targeting Ebola virus glycoprotein (VRC 608): an open-label phase 1 study. The Lancet, 2019, 393(10174):889-898.
doi: 10.1016/S0140-6736(19)30036-4
[9] Shi R, Shan C, Duan X M, et al. A human neutralizing antibody targets the receptor-binding site of SARS-CoV-2. Nature, 2020, 584(7819):120-124.
doi: 10.1038/s41586-020-2381-y
[10] Cao Y, Su B, Guo X, et al. Potent neutralizing antibodies against SARS-CoV-2 identified by high-throughput single-cell sequencing of convalescent patients’ b cells. Cell, 2020, 182(1):73-84.
doi: 10.1016/j.cell.2020.05.025
[11] Ju B, Zhang Q, Ge J W, et al. Human neutralizing antibodies elicited by SARS-CoV-2 infection. Nature, 2020, 584(7819):115-119.
doi: 10.1038/s41586-020-2380-z
[12] Chi X Y, Yan R H, Zhang J, et al. A neutralizing human antibody binds to the N-terminal domain of the spike protein of SARS-CoV-2. Science, 2020, 369(6504):650-655.
doi: 10.1126/science.abc6952
[13] Wang Q, Yang H, Liu X, et al. Molecular determinants of human neutralizing antibodies isolated from a patient infected with Zika virus. Science Translational Medicine, 2016, 8(369): 369ra179.
[14] King D J, Bowers P M, Kehry M R, et al. Mammalian cell display and somatic hypermutation in vitro for human antibody discovery. Curr Drug Discov Technol, 2014, 11(1):56-64.
doi: 10.2174/15701638113109990037
[15] Li Y, Wan Y H, Liu P P, et al. A humanized neutralizing antibody against MERS-CoV targeting the receptor-binding domain of the spike protein. Cell Research, 2015, 25(11):1237-1249.
doi: 10.1038/cr.2015.113
[16] Yang L F, Liu W H, Yu X, et al. COVID-19 antibody therapeutics tracker: a global online database of antibody therapeutics for the prevention and treatment of COVID-19. Antibody Therapeutics, 2020, 3(3):205-212.
doi: 10.1093/abt/tbaa020
[17] Jones B E, Brown-Augsburger P L, Corbett K S, et al. LY-CoV555, a rapidly isolated potent neutralizing antibody, provides protection in a non-human primate model of SARS-CoV-2 infection. bioRxiv, 2020, DOI: 10.1101/2020.09.30.318972.
[18] Gottlieb R L, Nirula A, Chen P, et al. Effect of bamlanivimab as monotherapy or in combination with etesevimab on viral load in patients with mild to moderate COVID-19. JAMA, 2021, 325(7):632.
doi: 10.1001/jama.2021.0202
[19] Hansen J, Baum A, Pascal K E, et al. Studies in humanized mice and convalescent humans yield a SARS-CoV-2 antibody cocktail. Science, 2020, 369(6506):1010-1014.
doi: 10.1126/science.abd0827
[20] Weinreich D M, Sivapalasingam S, Norton T, et al. REGN-COV2, a neutralizing antibody cocktail, in outpatients with covid-19. New England Journal of Medicine, 2021, 384(3):238-251.
doi: 10.1056/NEJMoa2035002
[21] Pinto D, Park Y J, Beltramello M, et al. Cross-neutralization of SARS-CoV-2 by a human monoclonal SARS-CoV antibody. Nature, 2020, 583(7815):290-295.
doi: 10.1038/s41586-020-2349-y pmid: 32422645
[22] Bournazos S, Corti D, Virgin H W, et al. Fc-optimized antibodies elicit CD8 immunity to viral respiratory infection. Nature, 2020, 588(7838):485-490.
doi: 10.1038/s41586-020-2838-z
[23] Dong J H, Zost S J, Greaney A J, et al. Genetic and structural basis for recognition of SARS-CoV-2 spike protein by a two-antibody cocktail. bioRxiv, 2021, DOI: 10.1101/2021.01.27.428529.
[24] Cheolmin K, Dong-Kyun R, Lee J H, et al. A therapeutic neutralizing antibody targeting receptor binding domain of SARS-CoV-2 spike protein. Nat Commun, 2021, 12(1):288.
doi: 10.1038/s41467-020-20602-5
[25] Lv Z, Deng Y Q, Ye Q, et al. Structural basis for neutralization of SARS-CoV-2 and SARS-CoV by a potent therapeutic antibody. Science, 2020, 369(6510):1505-1509.
doi: 10.1126/science.abc5881
[26] Bournazos S, Gupta A, Ravetch J V. The role of IgG Fc receptors in antibody-dependent enhancement. Nature Reviews Immunology, 2020, 20(10):633-643.
doi: 10.1038/s41577-020-00410-0
[27] Lee W S, Wheatley A K, Kent S J, et al. Antibody-dependent enhancement and SARS-CoV-2 vaccines and therapies. Nature Microbiology, 2020, 5(10):1185-1191.
doi: 10.1038/s41564-020-00789-5
[28] Arvin A M, Fink K, Schmid M A, et al. A perspective on potential antibody-dependent enhancement of SARS-CoV-2. Nature, 2020, 584(7821):353-363.
doi: 10.1038/s41586-020-2538-8 pmid: 32659783
[29] Mackness B C, Jaworski J A, Boudanova E, et al. Antibody Fc engineering for enhanced neonatal Fc receptor binding and prolonged circulation half-life. mAbs, 2019, 11(7):1276-1288.
doi: 10.1080/19420862.2019.1633883 pmid: 31216930
[1] 贠涛,巩玥,谷芃,徐冰冰,李瑾,赵洗尘. 中国与“一带一路”参与国家抗击新冠肺炎疫情的国际科技合作现状与展望[J]. 中国生物工程杂志, 2021, 41(7): 110-121.
[2] 张赛,王刚,刘仲明,李辉军,汪大明,钱纯亘. 新型冠状病毒胶体金抗原快速检测试剂的研制及性能评价*[J]. 中国生物工程杂志, 2021, 41(5): 27-34.
[3] 范月蕾,王跃,王恒哲,李丹丹,毛开云. 新型冠状病毒体外诊断技术研发现状与展望 *[J]. 中国生物工程杂志, 2021, 41(2/3): 150-161.
[4] 张赛,向乐,李林海,李辉军,王刚,钱纯亘. 新型冠状病毒(2019-nCoV)IgM /IgG抗体检测试剂的研制及性能评价[J]. 中国生物工程杂志, 2020, 40(8): 1-9.
[5] 苑亚坤,刘广洋,刘拥军,谢亚芳,吴昊. 间充质干细胞基础研究与临床转化的中美比较[J]. 中国生物工程杂志, 2020, 40(4): 97-107.
[6] 程永庆,刘金毅,林福玉,童梅. 重组人干扰素α1b与新型冠状病毒肺炎防治[J]. 中国生物工程杂志, 2020, 40(1-2): 71-77.
[7] 林福玉,刘金毅,程永庆. 重组人干扰素α1b抗新型冠状病毒的基础和临床研究进展[J]. 中国生物工程杂志, 2020, 40(12): 1-7.
[8] 王国强,于茵茵,曾华辉,王旭东,吴玉彬,尚立芝,李玉林,张怡青,张西西,张振强,王云龙. 基于MS2噬菌体病毒样颗粒的RT-PCR检测新型冠状病毒(SARS-CoV-2)质控品制备*[J]. 中国生物工程杂志, 2020, 40(12): 31-40.
[9] 陈利军,屈晶晶,项春生. 间充质干细胞在2019新型冠状病毒肺炎(COVID-19)中的治疗潜能、临床研究与应用前景*[J]. 中国生物工程杂志, 2020, 40(11): 43-55.
[10] 胡瞬,易有金,胡涛,李福胜. mRNA疫苗的开发及临床研究进展[J]. 中国生物工程杂志, 2019, 39(11): 105-112.
[11] 王启钊 吕颖慧 肖卫东 刁勇 许瑞安. 重组腺相关病毒载体临床实验研究[J]. 中国生物工程杂志, 2010, 30(01): 73-79.
[12] 吴超, 邹全明. 新型疫苗佐剂的研究进展[J]. 中国生物工程杂志, 2005, 25(8): 10-15.
[13] 莽克强. 迈向廿一世纪的生物工程[J]. 中国生物工程杂志, 1997, 17(6): 2-3,5-16.
[14] 王军志, 丁锡申. 国外基因治疗临床研究动向及市场展望[J]. 中国生物工程杂志, 1997, 17(3): 55-58,37.
[15] 徐新耒. 我国生物技术快速发展的十年[J]. 中国生物工程杂志, 1996, 16(3): 2-3.