Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2021, Vol. 41 Issue (5): 8-16    DOI: 10.13523/j.cb.2012039
研究报告     
miR-29a通过调控PTEN表达对脂多糖诱导人肺微血管内皮细胞损伤的保护作用研究*
陈玉琼1,2,谭文华2,刘海峰1,陈根1,2,**()
1 湖南省郴州市第一人民医院 郴州 423000
2 南华大学药物药理研究所 衡阳 421001
Protective Effect of miR-29a on Lipopolysaccharide-induced Human Pulmonary Microvascular Endothelial Cells Injury by Targeting PTEN Expression
CHEN Yu-qiong1,2,TAN Wen-hua2,LIU Hai-feng1,CHEN Gen1,2,**()
1 The First People’s Hospital of Chenzhou, Chenzhou 423000, China
2 Institute of Pharmacy and Pharmacology, University of South China, Hengyang 421001, China
 全文: PDF(31749 KB)   HTML
摘要:

目的:探讨miR-29a在脂多糖(LPS)诱导人肺微血管内皮细胞(HPMVECs)损伤中的作用及机制。方法:构建LPS损伤HPMVECs模型。RT-qPCR检测miR-29a表达变化;试剂盒测乳酸脱氢酶(LDH)释放量;MTT和流式细胞术分别检测细胞存活率及凋亡率;Western blot测蛋白质表达水平;Microcosm、starBase、Pictar、TargetScan软件预测 miR-29a的可能靶基因,双萤光素酶实验验证miR-29a和PTEN的靶向关系。结果:使用LPS处理HPMVECs,显著降低细胞中miR-29a的表达和细胞存活率,诱导LDH释放量和HPMVECs凋亡率增加,上调细胞中PTEN、Bim蛋白表达,下调p-Akt/Akt、p-FOXO3a/FOXO3a表达 (P<0.05);过表达miR-29a逆转LPS对HPMVECs的损伤作用。萤光素酶报告基因实验证实miR-29a 靶向PTEN,转染miR-29a mimics显著下调PTEN蛋白表达,转染miR-29a inhibitors明显上调PTEN蛋白表达 (P<0.05),但PTEN mRNA表达水平差异均无统计学意义(P>0.05)。结论:过表达miR-29a可能通过抑制PTEN蛋白的表达水平、激活Akt/FOXO3a/Bim信号通路对LPS致HUVECs的损伤发挥保护作用。

关键词: MiR-29a脂多糖人肺微血管内皮细胞PTEN    
Abstract:

Aim: To investigate the effect of miR-29a on lipopolysaccharide-induced injury in human pulmonary microvascular endothelial cells and its potential mechanism. Methods: The LPS-induced HPMVECs injury model was constructed. The expression level of miR-29a was detected by RT-qPCR. The concentration of LDH was measured by ELISA. MTT assay was used to detect the cell proliferation. The flow cytometry was applied to determine the HPMVECs apoptosis. The protein levels of PTEN, p-Akt, Akt, p-FOXO3a, FOXO3a and Bim were determined by Western blot. The targeting relationship between miR-29a and PTEN was predicted by Microcosm, starBase, Pictar, TargetScan and confirmed by luciferase test. Results: LPS treatment of HPMVECs significantly reduced the expression level of miR-29a and cell viability,induced the increase of LDH release amount and cell apoptic rate, upregulated the expression of PTEN and Bim protein, and down regulated the expression of p-Akt/Akt and p-FOXO3a/FOXO3a (P<0.05). Overexpression of miR-29a reversed the injury of LPS to HPMVECs. Dual luciferase reporter gene assay confirmed that PTEN was a negative regulatory target gene of miR-29a. The protein expression of PTEN was significantly down regulated by miR-29a mimics, and up-regulated by miR-29a inhibitors(P<0.05). However, the expression level of PTEN mRNA had no statistically significant difference (P>0.05). Conclusion: Overexpression of miR-29a, which targets inhibition of PTEN protein expression, protects against LPS-induced HUVECs injury by activating the Akt/FOXO3a/Bim pathway.

Key words: MicroRNA-29a    Lipopolysaccharide    Human pulmonary microvascular endothelial cells    PTEN
收稿日期: 2020-12-22 出版日期: 2021-06-01
ZTFLH:  R563.9  
基金资助: * 郴州市科技局(jsyf2017024);郴州市科技局(ZDYF2020028)
通讯作者: 陈根     E-mail: myth3878@aliyun.com
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
陈玉琼
谭文华
刘海峰
陈根

引用本文:

陈玉琼,谭文华,刘海峰,陈根. miR-29a通过调控PTEN表达对脂多糖诱导人肺微血管内皮细胞损伤的保护作用研究*[J]. 中国生物工程杂志, 2021, 41(5): 8-16.

CHEN Yu-qiong,TAN Wen-hua,LIU Hai-feng,CHEN Gen. Protective Effect of miR-29a on Lipopolysaccharide-induced Human Pulmonary Microvascular Endothelial Cells Injury by Targeting PTEN Expression. China Biotechnology, 2021, 41(5): 8-16.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2012039        https://manu60.magtech.com.cn/biotech/CN/Y2021/V41/I5/8

基因名称 引物序列
GAPDH F:5'-GGAGCGAGATCCCTCCAAAAT-3'
R:5'-GGCTGTTGTCATACTTCTCATGG-3'
PTEN F:5'-CGACGGGAAGACAAGACAAGTT-3'
R:5'-GCTAGCCTCTGGATTTGACG-3'
U6 F:5'-GCTTCGGCAGCACATATACTAAAAT-3'
R:5'-CGCTTCACGAATTTGCGTGTCAT-3'
miR-29a F:5'-GACTCGTAGCACCATCTG-3'
R:5'-GTGCAGGGTCCGAGGTAT-3'
表1  引物序列
图1  LPS处理对HPMVECs中miR-29a表达和LDH释放的影响
图2  过表达miR-29a逆转LPS致HPMVECs的损伤作用
图3  miR-29a与PTEN靶向关系的验证
图4  过表达miR-29a可能通过PTEN/Akt/FOXO3a/Bim信号通路对LPS致HPMVECs损伤作用的影响
[1] 周晓光, 洪慧. 新生儿急性呼吸窘迫综合征的治疗进展. 中华实用儿科临床杂志, 2017,32(2):81-84.
Zhou X G, Hong H. Advances in the treatment of neonatal acute respiratory distress syndrome. Chinese Journal of Applied Clinical Pediatrics, 2017,32(2):81-84.
[2] 江苏省新生儿ARDS研究协作组. 基于“柏林定义”的新生儿急性呼吸窘迫综合征临床流行病学调查研究. 中华新生儿科杂志(中英文), 2018,33(5):339-343.
Jiangsu Province Neonatal ARDS Research Group. A prospective, multi-center epidemiological study in neonates with acute respiratory distress syndrome based on the Berlin definition. Chinese Journal of Neonatology, 2018,33(5):339-343.
[3] de Luca D, van Kaam A H, Tingay D G, et al. The Montreux definition of neonatal ARDS: biological and clinical background behind the description of a new entity. The Lancet Respiratory Medicine, 2017,5(8):657-666.
doi: 10.1016/S2213-2600(17)30214-X
[4] Herwig M C, Tsokos M, Hermanns M I, et al. Vascular endothelial cadherin expression in lung specimens of patients with sepsis-induced acute respiratory distress syndrome and endothelial cell cultures. Pathobiology, 2013,80(5):245-251.
doi: 10.1159/000347062
[5] 王晓丽, 梅花, 刘春枝. 微小RNAs与新生儿急性呼吸窘迫综合征的研究进展. 中华围产医学杂志, 2019,22(7):495-499.
Wang X L, Mei H, Liu C Z. Progress on microRNAs and neonatal acute respiratory distress syndrome. Chinese Journal of Perinatal Medicine, 2019,22(7):495-499.
[6] Wong J J, Quek B H, Lee J H. Establishing the entity of neonatal acute respiratory distress syndrome. Journal of Thoracic Disease, 2017,9(11):4244-4247.
doi: 10.21037/jtd
[7] Kalogianni D P, Kalligosfyri P M, Kyriakou I K, et al. Advances in microRNA analysis. Analytical and Bioanalytical Chemistry, 2018,410(3):695-713.
doi: 10.1007/s00216-017-0632-z pmid: 29032457
[8] Zheng Y, Liu S Q, Sun Q, et al. Plasma microRNAs levels are different between pulmonary and extrapulmonary ARDS patients: a clinical observational study. Annals of Intensive Care, 2018,8(1):1-13.
doi: 10.1186/s13613-017-0346-6
[9] 陈丽, 吴本清, 陈文清, 等. microR-146a、microR-29a在新生大鼠急性肺损伤中的动态表达. 中华实用儿科临床杂志, 2014,29(22):1747-1750.
Chen L, Wu B Q, Chen W Q, et al. Dynamic expression changes of microR-146a and microR-29a in neonatal rats with acute lung injury. Chinese Journal of Applied Clinical Pediatrics, 2014,29(22):1747-1750.
[10] Zhang F Y, Yang N, Rao Y F, et al. Profiling of miRNAs in neonatal cloned bovines with collapsed lungs and respiratory distress. Reproduction in Domestic Animals, 2018,53(2):550-555.
doi: 10.1111/rda.2018.53.issue-2
[11] Zhao H W, Liu H, Liu L Y, et al. Analysis of microRNA expression profiling during paraquat-induced injury of murine lung alveolar epithelial cells. The Journal of Toxicological Sciences, 2020,45(8):423-434.
doi: 10.2131/jts.45.423
[12] Zheng F, Xiao F, Yuan Q H, et al. Penehyclidine hydrochloride decreases pulmonary microvascular endothelial inflammatory injury through a beta-arrestin-1-dependent mechanism. Inflammation, 2018,41(5):1610-1620.
doi: 10.1007/s10753-018-0804-9 pmid: 29766401
[13] Shao M, Tang S T, Liu B, et al. Rac1 mediates HMGB1-induced hyperpermeability in pulmonary microvascular endothelial cells via MAPK signal transduction. Molecular Medicine Reports, 2016,13(1):529-535.
doi: 10.3892/mmr.2015.4521 pmid: 26549372
[14] Nickols J, Obiako B, Ramila K C, et al. Lipopolysaccharide-induced pulmonary endothelial barrier disruption and lung edema: critical role for bicarbonate stimulation of AC10. American Journal of Physiology Lung Cellular and Molecular Physiology, 2015,309(12):L1430-L1437.
doi: 10.1152/ajplung.00067.2015
[15] Franke R P, Fuhrmann R, Mrowietz C, et al. Reduced diagnostic value of lactate dehydrogenase (LDH) in the presence of radiographic contrast media. Clinical Hemorheology and Microcirculation, 2010,45(2-4):123-130.
doi: 10.3233/CH-2010-1290 pmid: 20675892
[16] Zhang D, Zhou J, Ye L C, et al. Autophagy maintains the integrity of endothelial barrier in LPS-induced lung injury. Journal of Cellular Physiology, 2018,233(1):688-698.
doi: 10.1002/jcp.25928 pmid: 28328069
[17] Restin T, Kajdi M E, Schläpfer M, et al. Sevoflurane protects rat brain endothelial barrier structure and function after hypoxia-reoxygenation injury. PLoS One, 2017,12(10):e0184973.
doi: 10.1371/journal.pone.0184973
[18] Huang Z G, Li N, Shan Y, et al. Hsa-miRNA-29a protects against high glucose-induced damage in human umbilical vein endothelial cells. Journal of Cellular Biochemistry, 2019,120(4):5860-5868.
doi: 10.1002/jcb.v120.4
[19] Zhang Y, Li Y H, Liu C, et al. miR-29a regulates vascular neointimal hyperplasia by targeting YY1. Cell Proliferation, 2017,50(3):e12322. DOI: 10.1111/cpr.12322.
doi: 10.1111/cpr.2017.50.issue-3
[20] Liu S, Zhang X M, Hu C M, et al. miR-29a inhibits human retinoblastoma progression by targeting STAT3. Oncology Reports, 2018,39(2):739-746.
[21] Jiang T C, Sui D M, You D, et al. MiR-29a-5p inhibits proliferation and invasion and induces apoptosis in endometrial carcinoma via targeting TPX2. Cell Cycle, 2018,17(10):1268-1278.
doi: 10.1080/15384101.2018.1475829
[22] Hopkins B D, Parsons R E. Molecular pathways: intercellular PTEN and the potential of PTEN restoration therapy. Clinical Cancer Research, 2014,20(21):5379-5383.
doi: 10.1158/1078-0432.CCR-13-2661
[23] Shi J Y, Chen C, Xu X, et al. miR-29a promotes pathological cardiac hypertrophy by targeting the PTEN/AKT/mTOR signalling pathway and suppressing autophagy. Acta Physiologica (Oxford, England), 2019,227(2):e13323.
[24] 王晓景, 张明星, 陈小亮. 沉默PTEN基因抑制H2O2诱导的大鼠心肌细胞损伤. 基础医学与临床, 2019,39(5):705-709.
Wang X J, Zhang M X, Chen X L. Silencing PTEN gene inhibits cardiomyocyte injury induced by H2O2 in rats. Basic & Clinical Medicine, 2019,39(5):705-709.
[25] Haeusler R A, Hartil K, Vaitheesvaran B, et al. Integrated control of hepatic lipogenesis versus glucose production requires FoxO transcription factors. Nature Communications, 2014,5:5190.
doi: 10.1038/ncomms6190 pmid: 25307742
[26] Chen Q, Chen X S, Han C H, et al. FGF-2 transcriptionally down-regulates the expression of BNIP3L via PI3K/Akt/FoxO3a signaling and inhibits necrosis and mitochondrial dysfunction induced by high concentrations of hydrogen peroxide in H9c2 cells. Cellular Physiology and Biochemistry, 2016,40(6):1678-1691.
doi: 10.1159/000453217
[27] Manning B D, Cantley L C. AKT/PKB signaling: navigating downstream. Cell, 2007,129(7):1261-1274.
doi: 10.1016/j.cell.2007.06.009
[28] Juhasz B, Thirunavukkarasu M, Pant R, et al. Bromelain induces cardioprotection against ischemia-reperfusion injury through Akt/FOXO pathway in rat myocardium. American Journal of Physiology Heart and Circulatory Physiology, 2008,294(3):H1365-H1370.
doi: 10.1152/ajpheart.01005.2007
[29] Gilley J, Coffer P J, Ham J. FOXO transcription factors directly activate bim gene expression and promote apoptosis in sympathetic neurons. Journal of Cell Biology, 2003,162(4):613-622.
[30] Strasser A, Puthalakath H, Bouillet P, et al. The role of bim, a proapoptotic BH3-only member of the Bcl-2 family in cell-death control. Annals of the New York Academy of Sciences, 2000,917:541-548.
doi: 10.1111/(ISSN)1749-6632
[1] 李洪昌, 袁林, 张令强. 抑癌基因PTEN转基因小鼠的构建及表型初步分析[J]. 中国生物工程杂志, 2015, 35(8): 1-8.
[2] 黄晨, 王家融, 杨吉成, 盛伟华, 缪竞诚. Ad.RGD-ING4-PTEN对MEG01人白血病细胞的抑制作用[J]. 中国生物工程杂志, 2014, 34(3): 9-17.
[3] 成志勇, 梁文同, 王素云, 颜晓燕, 李华, 王宝艳, 田赫, 魏玉涛, 芦希. PTEN/NF-κB/Caspase信号通路对K562/ADM细胞阿霉素耐药逆转机制的研究[J]. 中国生物工程杂志, 2013, 33(3): 54-60.
[4] 龚普盛, 张建亮, 付越姣, 贾焕珍, 段春礼, 鲁玲玲, 赵春礼, 杨慧. 过表达PINK1抵抗鱼藤酮引起多巴胺神经元损伤的研究[J]. 中国生物工程杂志, 2012, 32(02): 33-38.
[5] 马海蓉,孙仪,曹旭,汪汉卿. 天然抗感染分子-细菌透性增加蛋白[J]. 中国生物工程杂志, 2006, 26(07): 94-98.
[6] 陈昕. 下游层析工艺中热原的去除[J]. 中国生物工程杂志, 2002, 22(4): 100-104.