Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2021, Vol. 41 Issue (5): 45-50    DOI: 10.13523/j.cb.2101014
综述     
piRNA生物学起源及功能研究进展
颜愈佳,邹玲()
四川大学华西口腔医院牙体牙髓病科 口腔疾病研究国家重点实验室 国家口腔疾病临床医学研究中心 成都 610041
Research Progress on the Biogenesis and Function of piRNAs
YAN Yu-jia,ZOU Ling()
State Key Laboratory of Oral Diseases,National Clinical Research Center for Oral Diseases, Department of Conservative Dentistry and Endodontics, West China Hospital of Stomatology, Sichuan University, Chengdu 610041, China
 全文: PDF(442 KB)   HTML
摘要:

piRNA属于非编码小RNA的一员,常见于生殖系干细胞中。既往学者们认为它主要在维持干细胞功能、配子的形成以及沉默外来转座子等方面发挥作用。但近来在体细胞系中的发现,使得人们对它的生物起源以及功能行使有了更大的兴趣。就piRNA的发现、结构特征、功能与基因调控等进行了综述。

关键词: piRNAPIWI表观遗传调控转录后水平调控    
Abstract:

PiRNA is a member of non-coding small RNA, which is commonly detected in germline cells. Previously scholars used to believe that piRNA mainly plays a role in maintaining the function of stem cells,formation of the gametes and silencing foreign transposon genes.But recent discoveries which show the piRNA traces in somatic cells have led to greater interest in its biogenesis and further function. The discovery, structure, function and gene regulation of piRNA were reviewed.

Key words: piRNA    PIWI    Epigenetic regulation    Posttranscriptional regulation
收稿日期: 2021-01-07 出版日期: 2021-06-01
ZTFLH:  Q819  
通讯作者: 邹玲     E-mail: zouling@scu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
颜愈佳
邹玲

引用本文:

颜愈佳,邹玲. piRNA生物学起源及功能研究进展[J]. 中国生物工程杂志, 2021, 41(5): 45-50.

YAN Yu-jia,ZOU Ling. Research Progress on the Biogenesis and Function of piRNAs. China Biotechnology, 2021, 41(5): 45-50.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2101014        https://manu60.magtech.com.cn/biotech/CN/Y2021/V41/I5/45

[1] 沙龙泽, 曾毅, 王建博, 等. 小RNA分子研究进展. 生物学通报, 2009,44(1):1-5.
Sha L Z, Zeng Y, Wang J B, et al. Research progress of small RNAs. Bulletin of Biology, 2009,44(1):1-5.
[2] Aravin A A, Sachidanandam R, Girard A, et al. Developmentally regulated PiRNA clusters implicate MILI in transposon control. Science, 2007,316(5825):744-747.
doi: 10.1126/science.1142612
[3] Brennecke J, Aravin A A, Stark A, et al. Discrete small RNA-generating loci as master regulators of transposon activity in Drosophila. Cell, 2007,128(6):1089-1103.
pmid: 17346786
[4] Lau N C, Seto A G, Kim J, et al. Characterization of the PiRNA complex from rat testes. Science, 2006,313(5785):363-367.
doi: 10.1126/science.1130164
[5] Aravin A, Gaidatzis D, Pfeffer S, et al. A novel class of small RNAs bind to MILI protein in mouse testes. Nature, 2006,442(7099):203-207.
doi: 10.1038/nature04916
[6] Girard A, Sachidanandam R, Hannon G J, et al. A germline-specific class of small RNAs binds mammalian Piwi proteins. Nature, 2006,442(7099):199-202.
doi: 10.1038/nature04917
[7] Andersen P R, Tirian L, Vunjak M, et al. A heterochromatin-dependent transcription machinery drives PiRNA expression. Nature, 2017,549(7670):54-59.
doi: 10.1038/nature23482 pmid: 28847004
[8] Yan Z, Hu H Y, Jiang X, et al. Widespread expression of PiRNA-like molecules in somatic tissues. Nucleic Acids Research, 2011,39(15):6596-6607.
doi: 10.1093/nar/gkr298
[9] Gonzalez J, Qi H Y, Liu N, et al. Piwi is a key regulator of both somatic and germline stem cells in the Drosophila testis. Cell Reports, 2015,12(1):150-161.
doi: S2211-1247(15)00587-2 pmid: 26119740
[10] Hirakata S, Siomi M C. PiRNA biogenesis in the germline: From transcription of PiRNA genomic sources to PiRNA maturation. Biochimica et Biophysica Acta (BBA) - Gene Regulatory Mechanisms, 2016,1859(1):82-92.
doi: 10.1016/j.bbagrm.2015.09.002
[11] Prud’Homme N, Gans M, Masson M, et al. Flamenco, a gene controlling the Gypsy retrovirus of Drosophila melanogaster. Genetics, 1995,139(2):697-711.
doi: 10.1093/genetics/139.2.697
[12] Goriaux C, Desset S, Renaud Y, et al. Transcriptional properties and splicing of the flamenco piRNA cluster. Embo Reports, 2014,15(4):411.
doi: 10.1002/embr.201337898 pmid: 24562610
[13] Mohn F, Sienski G, Handler D, et al. The rhino-deadlock-cutoff complex licenses noncanonical transcription of dual-strand PiRNA clusters in Drosophila. Cell, 2014,157(6):1364-1379.
doi: 10.1016/j.cell.2014.04.031
[14] Yu B W, Lin Y, Parhad S S, et al. Structural insights into Rhino-Deadlock complex for germline PiRNA cluster specification. EMBO Reports, 2018,19(7). DOI: 10.15252/embr.201745418.
[15] Chen Y C A, Stuwe E, Luo Y C, et al. Cutoff suppresses RNA polymerase II termination to ensure expression of PiRNA precursors. Molecular Cell, 2016,63(1):97-109.
doi: 10.1016/j.molcel.2016.05.010
[16] Qi H Y, Watanabe T, Ku H Y, et al. The Yb body, a major site for Piwi-associated RNA biogenesis and a gateway for Piwi expression and transport to the nucleus in somatic cells. The Journal of Biological Chemistry, 2011,286(5):3789-3797.
doi: 10.1074/jbc.M110.193888
[17] Karam J A, Parikh R Y, Nayak D, et al. Co-chaperone Hsp70/Hsp90-organizing protein (Hop) is required for transposon silencing and Piwi-interacting RNA (PiRNA) biogenesis. Journal of Biological Chemistry, 2017,292(15):6039-6046.
doi: 10.1074/jbc.C117.777730
[18] Girardi E, Miesen P, Pennings B, et al. Histone-derived PiRNA biogenesis depends on the Ping-pong partners Piwi5 and Ago3 in Aedes aegypti. Nucleic Acids Research, 2017,45(8):4881-4892.
doi: 10.1093/nar/gkw1368 pmid: 28115625
[19] Czech B, Hannon G J. One loop to rule them all: the Ping-pong cycle and PiRNA-guided silencing. Trends in Biochemical Sciences, 2016,41(4):324-337.
doi: 10.1016/j.tibs.2015.12.008
[20] Höck J, Meister G. The Argonaute protein family. Genome Biology, 2008,9(2):210.
doi: 10.1186/gb-2008-9-2-210
[21] Schoeberl U E, Mochizuki K. Keeping the soma free of transposons: programmed DNA elimination in ciliates. Journal of Biological Chemistry, 2011,286(43):37045-37052.
doi: 10.1074/jbc.R111.276964 pmid: 21914793
[22] Mochizuki K, Gorovsky M A. A Dicer-like protein in Tetrahymena has distinct functions in genome rearrangement, chromosome segregation, and meiotic prophase. Genes & Development, 2005,19(1):77-89.
doi: 10.1101/gad.1265105
[23] Miyoshi K. Slicer function of Drosophila Argonautes and its involvement in RISC formation. Genes & Development, 2005,19(23):2837-2848.
doi: 10.1101/gad.1370605
[24] Zhang P, Kang J Y, Gou L T, et al. MIWI and PiRNA-mediated cleavage of messenger RNAs in mouse testes. Cell Research, 2015,25(2):193-207.
doi: 10.1038/cr.2015.4 pmid: 25582079
[25] Yuan J, Zhang P, Cui Y, et al. Computational identification of PiRNA targets on mouse mRNAs. Bioinformatics, 2016,32(8):1170-1177.
doi: 10.1093/bioinformatics/btv729
[26] Balaratnam S, West N, Basu S. A PiRNA utilizes HILI and HIWI2 mediated pathway to down-regulate ferritin heavy chain 1 mRNA in human somatic cells. Nucleic Acids Research, 2018,46(20):10635-10648.
doi: 10.1093/nar/gky728 pmid: 30102404
[27] Brower-Toland B, Findley S D, Jiang L, et al. Drosophila PIWI associates with chromatin and interacts directly with HP1a. Genes & Development, 2007,21(18):2300-2311.
doi: 10.1101/gad.1564307
[28] Huang X, Yin H, Sweeney S, et al. A major epigenetic programming mechanism guided by piRNAs. Developmental Cell, 2013,24(5):502-516.
doi: 10.1016/j.devcel.2013.01.023 pmid: 23434410
[29] Yu Y, Gu J Q, Jin Y, et al. Panoramix enforces PiRNA-dependent cotranscriptional silencing. Science, 2015,350(6258):339-342.
doi: 10.1126/science.aab0700
[30] Sienski G, Batki J, Senti K A, et al. Silencio/CG9754 connects the Piwi-PiRNA complex to the cellular heterochromatin machinery. Genes & Development, 2015,29(21):2258-2271.
doi: 10.1101/gad.271908.115
[31] Zhao K, Cheng S, Miao N, et al. A Pandas complex adapted for PiRNA-guided transcriptional silencing and heterochromatin formation. Nature Cell Biology, 2019,21(10):1261-1272.
doi: 10.1038/s41556-019-0396-0
[32] Aravin A A, Bourc’His D. Small RNA guides for de novo DNA methylation in mammalian germ cells. Genes & Development, 2008,22(8):970-975.
doi: 10.1101/gad.1669408
[33] Aravin A A, Sachidanandam R, Bourc’His D, et al. A PiRNA pathway primed by individual transposons is linked to de novo DNA methylation in mice. Molecular Cell, 2008,31(6):785-799.
doi: 10.1016/j.molcel.2008.09.003
[34] Kojima-Kita K, Kuramochi-Miyagawa S, Nagamori I, et al. MIWI2 as an effector of DNA methylation and gene silencing in embryonic male germ cells. Cell Reports, 2016,16(11):2819-2828.
doi: S2211-1247(16)31091-9 pmid: 27626653
[35] Rajasethupathy P, Antonov I, Sheridan R, et al. A role for neuronal piRNAs in the epigenetic control of memory-related synaptic plasticity. Cell, 2012,149(3):693-707.
doi: 10.1016/j.cell.2012.02.057 pmid: 22541438
[36] Ross R J, Weiner M M, Lin H F. PIWI proteins and PIWI-interacting RNAs in the soma. Nature, 2014,505(7483):353-359.
doi: 10.1038/nature12987
[37] Acunzo M, Romano G, Wernicke D, et al. MicroRNA and cancer:a brief overview. Advances in Biological Regulation, 2015,57:1-9.
doi: 10.1016/j.jbior.2014.09.013 pmid: 25294678
[38] Weng W H, Li H H, Goel A. Piwi-interacting RNAs (piRNAs) and cancer: Emerging biological concepts and potential clinical implications. Biochimica et Biophysica Acta (BBA) - Reviews on Cancer, 2019,1871(1):160-169.
doi: 10.1016/j.bbcan.2018.12.005
[39] 江妍霞, 胥倩, 陈国安. 新型非编码小RNA-piRNA在恶性血液病发病中的作用研究进展. 中华实用诊断与治疗杂志, 2017,31(12):1233-1235.
Jiang Y X, Xu Q, Cheng G A. Research progress of novel non-coding small RNA-piRNA in the pathogenesis of hematological malignancies. Journal of Chinese Practical Diagnosis and Therapy, 2017,31(12):1233-1235.
[40] Fu A, Jacobs D I, Hoffman A E, et al. PIWI-interacting RNA 021285 is involved in breast tumorigenesis possibly by remodeling the cancer epigenome. Carcinogenesis, 2015,36(10):1094-1102.
doi: 10.1093/carcin/bgv105
[41] Yin J, Jiang X Y, Qi W, et al. piR-823 contributes to colorectal tumorigenesis by enhancing the transcriptional activity of HSF 1. Cancer Science, 2017,108(9):1746-1756.
doi: 10.1111/cas.2017.108.issue-9
[42] Su J F, Zhao F, Gao Z W, et al. piR-823 demonstrates tumor oncogenic activity in esophageal squamous cell carcinoma through DNA methylation induction via DNA methyltransferase 3B. Pathology - Research and Practice, 2020,216(4):152848.
doi: 10.1016/j.prp.2020.152848
[43] Cheng J, Deng H X, Xiao B X, et al. piR-823, a novel non-coding small RNA, demonstrates in vitro and in vivo tumor suppressive activity in human gastric cancer cells. Cancer Letters, 2012,315(1):12-17.
doi: 10.1016/j.canlet.2011.10.004 pmid: 22047710
[44] Iliev R, Fedorko M, Machackova T, et al. Expression levels of PIWI-interacting RNA, piR-823, are deregulated in tumor tissue, blood serum and urine of patients with renal cell carcinoma. Anticancer Research, 2016,36(12):6419-6424.
doi: 10.21873/anticanres
[1] 袁迪, 杨怡姝, 李泽琳, 曾毅. HIV-1基因表达的转录调控[J]. 中国生物工程杂志, 2014, 34(5): 80-86.
[2] 黄雪梅,张守涛,王芳,刘伟,张一折. piRNA:一类新的非编码小RNA[J]. 中国生物工程杂志, 2008, 28(8): 130-135.