Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2021, Vol. 41 Issue (4): 47-54    DOI: 10.13523/j.cb.2101006
综述     
单分子免疫检测技术研究进展*
张雪洁,汤家宝,李廷栋(),葛胜祥
厦门大学公共卫生学院 分子疫苗学和分子诊断学国家重点实验室 国家传染病诊断试剂与疫苗工程技术研究中心 医用生物制品省部共建协同创新中心 厦门 361102
Advances in Single Molecule Immunoassay
ZHANG Xue-jie,TANG Jia-bao,LI Ting-dong(),GE Sheng-xiang
School of Public Health, Xiamen University,State Key Laboratory of Molecular Vaccinology and Molecular Diagnostics, National Institute of Diagnostics and Vaccine Development in Infectious Diseases,Collaborative Innovation Centers of Biological Products,Xiamen University, Xiamen 361102, China
 全文: PDF(30489 KB)   HTML
摘要:

早诊断、早发现、早治疗是提升肿瘤患者生存率的主要手段。临床常用的免疫学检测方法如酶联免疫吸附法、化学发光法等,其检测灵敏度多限制在10-14~10-12 mol/L,无法满足早期诊断的需求。单分子免疫检测法,可将待检测分子限制在极小空间范围内(nL以下),对检测信号进行绝对计数,从而实现痕量(可达10-18 mol/L)标志物的检测。这一超高灵敏度技术实现的关键在于将检测范围限制在极小体积内。经过数十年发展,不论是物理隔离还是利用纳米孔,抑或通过改进显微镜性能,均可在极小体积内(10-21 L)对信号进行检测。目前基于微阵列的SimoA检测系统已成为单分子免疫检测的金标准,Quanterix公司基于此开发的HD-1分析仪已进入市场应用。基于微液滴的单分子免疫检测技术主要限于实验室,但具有床旁检测的优势。重点介绍了基于物理隔离形式如微阵列和微液滴的单分子免疫检测进展,为进一步开发超高灵敏度检测方法并促进未来临床应用提供理论基础。

关键词: 单分子免疫检测微阵列微液滴    
Abstract:

Early diagnosis, early detection, and early treatment is an important strategy for improving the survival rate of patients. However, the current immunological reagents based on enzyme-linked immunosorbent assay and chemiluminescence are mostly limited to 10-14~10-12 mol/L, which cannot meet the needs for early diagnosis. On the contrary, single molecule detection allows to detect very low amount of biomarkers(~ 10-18 mol/ L) through limiting the immune complex into extremely small space(below nL). The results are produced by counting positive spots.The key for this technology is to create an array of small space. After decades of development, the detection range has been successfully limited to zL (10-21 L) through physical isolation,nanopores, or high-resolution microscope. For now, the SiMoA based on microarray has become the gold standard for single-molecule immunoassays. And the Quanterix’s HD-1 analyzer based on SiMoA has been applied for clinical practice, while the technology based microdroplets are mainly used for laboratory research. However, the later provide an avenue for point of care testing (POCT). Herein, this review will focus on the progress of single-molecule detection based on microarrays and microdroplets. It will provide a theoretical basis for the development of ultra-high sensitivity detection methods and promote this technology into clinical applica-tions.

Key words: Single molecule detection    Microarray    Microdroplets
收稿日期: 2021-01-04 出版日期: 2021-04-30
ZTFLH:  Q819  
基金资助: *国家科技重大专项资助项目(2017ZX10302201)
通讯作者: 李廷栋     E-mail: litingdong@xmu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
张雪洁
汤家宝
李廷栋
葛胜祥

引用本文:

张雪洁,汤家宝,李廷栋,葛胜祥. 单分子免疫检测技术研究进展*[J]. 中国生物工程杂志, 2021, 41(4): 47-54.

ZHANG Xue-jie,TANG Jia-bao,LI Ting-dong,GE Sheng-xiang. Advances in Single Molecule Immunoassay. China Biotechnology, 2021, 41(4): 47-54.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2101006        https://manu60.magtech.com.cn/biotech/CN/Y2021/V41/I4/47

图1  环孔聚合物芯片的制作
图2  SimoA 反应原理图
图3  HD-1分析仪[19]
图4  微液滴单分子免疫检测原理图
检测形式 结构基础 芯片构建材料 研究现状 检测灵敏度
(mol/L)
优势 劣势
微阵列 微井 PDMA
光纤维束 COP
HD-1 全自动化
仪器(金标准)
10-18 易于实现自动化检测,检测结果更稳定 较难实现POCT,微井数量有限,有概率造成磁珠的遗失
微液滴 油包水微液滴 PDMS
PMMA
μMD POCT
检测平台
10-18 用于POCT,造价低廉,可无限生成微液滴 芯片制作工艺尚不成熟,较难生成 fL级液滴
表1  微阵列与微流控技术比较
[1] 郑荣寿, 孙可欣, 张思维, 等. 2015年中国恶性肿瘤流行情况分析. 中华肿瘤杂志, 2019,41(1):19-28.
Zheng R S, Sun K X, Zhang S W, et al. Report of cancer epidemiology in China, 2015. Chinese Journal of Oncology, 2019,41(1):19-28.
[2] Srinivas P R, Kramer B S, Srivastava S. Trends in biomarker research for cancer detection. The Lancet Oncology, 2001,2(11):698-704.
doi: 10.1016/S1470-2045(01)00560-5 pmid: 11902541
[3] Giljohann D A, Mirkin C A. Drivers of biodiagnostic development. Nature, 2009,462(7272):461-464.
pmid: 19940916
[4] Gaster R S, Hall D A, Nielsen C H, et al. Matrix-insensitive protein assays push the limits of biosensors in medicine. Nature Medicine, 2009,15(11):1327-1332.
doi: 10.1038/nm.2032 pmid: 19820717
[5] Bobrow M N, Harris T D, Shaughnessy K J, et al. Catalyzed reporter deposition, a novel method of signal amplification application to immunoassays. Journal of Immunological Methods, 1989,125(1-2):279-285.
pmid: 2558138
[6] Rissin D M, Kan C W, Campbell T G, et al. Single-molecule enzyme-linked immunosorbent assay detects serum proteins at subfemtomolar concentrations. Nature Biotechnology, 2010,28(6):595-599.
pmid: 20495550
[7] Cohen L, Walt D R. Single-molecule arrays for protein and nucleic acid analysis. Annual Review of Analytical Chemistry, 2017,10:345-363.
[8] Macchia E, Manoli K, Holzer B, et al. Single-molecule detection with a millimetre-sized transistor. Nature Communications, 2018,9:3223.
[9] Taylor A B, Zijlstra P. Single-molecule plasmon sensing: current status and future prospects. ACS Sensors, 2017,2(8):1103-1122.
[10] Punj D, Regmi R, Devilez A, et al. Self-assembled nanoparticle dimer antennas for plasmonic-enhanced single-molecule fluorescence detection at micromolar concentrations. ACS Photonics, 2015,2(8):1099-1107.
[11] Holzmeister P, Acuna G P, Grohmann D, et al. Breaking the concentration limit of optical single-molecule detection. Chemical Society Reviews, 2014,43(4):1014-1028.
[12] McDonald J C, Duffy D C, Anderson J R, et al. Fabrication of microfluidic systems in poly(dimethylsiloxane). Electrophoresis, 2000,21(1):27-40.
[13] Michael K L, Taylor L C, Schultz S L, et al. Randomly ordered addressable high-density optical sensor arrays. Analytical Chemistry, 1998,70(7):1242-1248.
pmid: 9553489
[14] Walt D R. Fibre optic microarrays. Chemical Society Reviews, 2010,39(1):38-50.
pmid: 20023835
[15] Shin J Y, Park J Y, Liu C Y, et al. Chemical structure and physical properties of cyclic olefin copolymers (IUPAC technical report). Pure and Applied Chemistry, 2005,77(5):801-814.
[16] Nguyen D, Taylor D, Qian K, et al. Better shrinkage than shrinky-dinks. Lab on a Chip, 2010,10(12):1623-1626.
doi: 10.1039/c001082k pmid: 20517559
[17] Steigert J, Haeberle S, Brenner T, et al. Rapid prototyping of microfluidic chips in COC. Journal of Micromechanics and Microengineering, 2007,17(2):333-341.
[18] Kan C W, Rivnak A J, Campbell T G, et al. Isolation and detection of single molecules on paramagnetic beads using sequential fluid flows in microfabricated polymer array assem-blies. Lab on a Chip, 2012,12(5):977-985.
[19] Wilson D H, Rissin D M, Kan C W, et al. The simoa HD-1 analyzer: A novel fully automated digital immunoassay analyzer with single-molecule sensitivity and multiplexing. Journal of Laboratory Automation, 2016,21(4):533-547.
[20] Yelleswarapu V, Buser J R, Haber M, et al. Mobile platform for rapid sub-picogram-per-milliliter, multiplexed, digital droplet detection of proteins. PNAS, 2019,116(10):4489-4495.
pmid: 30765530
[21] Chong Z Z, Tan S H, Gañán-Calvo A M, et al. Active droplet generation in microfluidics. Lab on a Chip, 2016,16(1):35-58.
[22] Zheng B, Tice J D, Ismagilov R F. Formation of droplets of alternating composition in microfluidic channels and applications to indexing of concentrations in droplet-based assays. Analytical Chemistry, 2004,76(17):4977-4982.
[23] Cramer C, Fischer P, Windhab E J. Drop formation in a co-flowing ambient fluid. Chemical Engineering Science, 2004,59(15):3045-3058.
[24] Marín A G, Campo-Cortés F, Gordillo J M. Generation of micron-sized drops and bubbles through viscous coflows. Colloids and Surfaces A: Physicochemical and Engineering Aspects, 2009,344(1-3):2-7.
[25] Arayanarakool R, Shui L L, Kengen S W M, et al. Single-enzyme analysis in a droplet-based micro- and nanofluidic system. Lab on a Chip, 2013,13(10):1955-1962.
pmid: 23546540
[26] Christensen S M, Bolinger P Y, Hatzakis N S, et al. Mixing subattolitre volumes in a quantitative and highly parallel manner with soft matter nanofluidics. Nature Nanotechnology, 2012,7(1):51-55.
pmid: 22036813
[27] Abate A R, Weitz D A. Faster multiple emulsification with drop splitting. Lab on a Chip, 2011,11(11):1911-1915.
pmid: 21505660
[28] Pollock N R, Banz A, Chen X H, et al. Comparison of Clostridioides difficile stool toxin concentrations in adults with symptomatic infection and asymptomatic carriage using an ultrasensitive quantitative immunoassay. Clinical Infectious Diseases, 2019,68(1):78-86.
[29] Su B, Yin J M, Lin X G, et al. Quantification of SARS-CoV-2 antigen levels in the blood of patients with COVID-19. Science China Life Sciences, 2020. DOI: 10.1007/s11427-020-1830-8.
pmid: 33740187
[30] Ogata A F, Maley A M, Wu C, et al. Ultra-sensitive serial profiling of SARS-CoV-2 antigens and antibodies in plasma to understand disease progression in COVID-19 patients with severe disease. Clinical Chemistry, 2020,66(12):1562-1572.
[31] Wu D L, Dinh T L, Bausk B P, et al. Long-term measurements of human inflammatory cytokines reveal complex baseline variations between individuals. The American Journal of Pathology, 2017,187(12):2620-2626.
[32] Marín-Romero A, Robles-Remacho A, Tabraue-Chávez M, et al. A PCR-free technology to detect and quantify microRNAs directly from human plasma. The Analyst, 2018,143(23):5676-5682.
doi: 10.1039/c8an01397g pmid: 30411757
[33] Chhatwal J P, Schultz A P, Dang Y F, et al. Plasma N-terminal tau fragment levels predict future cognitive decline and neurodegeneration in healthy elderly individuals. Nature Communications, 2020,11(1):6024.
pmid: 33247134
[34] Thebault S, Abdoli M, Fereshtehnejad S M, et al. Serum neurofilament light chain predicts long term clinical outcomes in multiple sclerosis. Scientific Reports, 2020,10:10381.
[35] Tarawneh R, D’Angelo G, Macy E, et al. Visinin-like protein-1: diagnostic and prognostic biomarker in Alzheimer disease. Annals of Neurology, 2011,70(2):274-285.
pmid: 21823155
[36] Mommert M, Perret M, Hockin M, et al. Type-I interferon assessment in 45 minutes using the FilmArray® PCR platform in SARS-CoV-2 and other viral infections. European Journal of Immunology, 2020. DOI: 10.1002/eji.202048978.
pmid: 33792033
[37] Casaletto K B, Elahi F M, Fitch R, et al. A comparison of biofluid cytokine markers across platform technologies: Correspondence or divergence? Cytokine, 2018,111:481-489.
pmid: 29908923
[38] Trouillet-Assant S, Viel S, Gaymard A, et al. Type I IFN immunoprofiling in COVID-19 pa-tients. Journal of Allergy and Clinical Immunology, 2020,146(1):206-208, e2.
[39] Ben Salah E, Dorgham K, Lesénéchal M, et al. Assessment of an ultra-sensitive IFNγ immunoassay prototype for latent tuberculosis diagnosis. European Cytokine Network, 2018,29(4):136-145.
[40] Wilson D H, Hanlon D W, Provuncher G K, et al. Fifth-generation digital immunoassay for prostate-specific antigen by single molecule array technology. Clinical Chemistry, 2011,57(12):1712-1721.
doi: 10.1373/clinchem.2011.169540 pmid: 21998342
[41] Duffy D C, Rissin D M, Kan C W, et al. Detection of prostate specific antigen (PSA) in the serum of radical prostatectomy patients at femtogram per milliliter levels using digital ELISA (AccuPSATM) based on single molecule arrays (SiMoA). [2021-01-20]. https://www.quanterix.com/publications-posters/development-accupsatm-novel-digital-immunoassay-subfemtomolar.
[42] Wilson D H, Duffy D C, Rissin D M, et al. Development of (AccuPSATM), a novel digital immunoassay for sub-femtomolar measurement of PSA in post radical prostatectomy pa-tients. [2021-01-20]. https://www.quanterix.com/publications-posters/development-accupsatm-novel-digital-immunoassay-subfemtomolar
[43] Shi Y, Gao W, Lytle N K, et al. Targeting LIF-mediated paracrine interaction for pancreatic can cer. therapy and monitoring. Nature, 2019,569(7754):131-135.
pmid: 30996350
[44] Yoh K E, Lowe C J, Mahajan S, et al. Enrichment of circulating tumor-derived extracellular vesicles from human plasma. Journal of Immunological Methods, 2021,490:112936.
pmid: 33242493
[45] Cohen L, Hartman M R, Amardey-Wellington A, et al. Digital direct detection of microRNAs using single molecule arrays. Nucleic Acids Research, 2017,45(14):e137.
doi: 10.1093/nar/gkx542 pmid: 28637221
[46] Li Z H, Hayman R B, Walt D R. Detection of single-molecule DNA hybridization using en-zymatic amplification in an array of femtoliter-sized reaction vessels. Journal of the Ameri-can Chemical Society, 2008,130(38):12622-12623.
[47] Schubert S M, Walter S R, Manesse M, et al. Protein counting in single cancer cells. Analytical Chemistry, 2016,88(5):2952-2957.
[48] Saxena A, Dagur P K, Desai A, et al. Ultrasensitive quantification of cytokine proteins in single lymphocytes from human blood following ex-vivo stimulation. Frontiers in Immunology, 2018,9:2462.
pmid: 30405640
[49] Wang T J, Wollert K C, Larson M G, et al. Prognostic utility of novel biomarkers of cardiovascular stress: the framingham heart study. Circulation, 2012,126(13):1596-1604.
[1] 吕林莉,刘必成,朱颖,陆祖宏. 基于夹心免疫分析的抗体微阵列的构建[J]. 中国生物工程杂志, 2008, 28(9): 83-88.
[2] 余海浪,马文丽,郑文岭. 用于基因数据挖掘的基因表达数据库GEO[J]. 中国生物工程杂志, 2007, 27(8): 96-103.
[3] 彭翼飞,马文丽. 寡核苷酸阵列比较基因组杂交技术及其应用[J]. 中国生物工程杂志, 2006, 26(10): 44-49.
[4] 黄海燕, 韩金祥, 王健伟, 高雪芹, 潘继红, 刘毅, 朱波. 检测A组轮状病毒的微阵列技术初探[J]. 中国生物工程杂志, 2005, 25(3): 79-83.
[5] 周勇, 王伟, 耿美玉, 杜冠华. 雄激素含量测定用蛋白微阵列的制备[J]. 中国生物工程杂志, 2005, 25(11): 89-95.
[6] 黄庆, 府伟灵, 张华, 郭颖. DNA甲基化微阵列[J]. 中国生物工程杂志, 2005, 25(10): 54-57.
[7] 金世辉, 刘必成, 张春秀, 唐祖明, 陆祖宏. 蛋白质微阵列生产用琼脂糖修饰玻片制备的条件优化[J]. 中国生物工程杂志, 2005, 25(02): 57-60.
[8] 张庆峰, 高志贤, 王升启. 用于雌二醇检测的免疫芯片技术[J]. 中国生物工程杂志, 2004, 24(9): 86-88.
[9] 肖乐义, 祁自柏, 姜俊, 张子宽. 滚环DNA扩增的原理、应用和展望[J]. 中国生物工程杂志, 2004, 24(9): 33-38.
[10] 张庆峰, 高志贤, 王升启. 蛋白微阵列技术及其应用[J]. 中国生物工程杂志, 2004, 24(2): 66-69.
[11] 鲁艳芹, 韩金祥. DNA微阵列基片的化学处理[J]. 中国生物工程杂志, 2002, 22(6): 69-74.
[12] 罗田. 微阵列计划(MICROARRAY PROJECT,μAP)[J]. 中国生物工程杂志, 2001, 21(3): 57-62.