Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2020, Vol. 40 Issue (9): 69-76    DOI: 10.13523/j.cb.2004033
综述     
丁醇在大肠杆菌中的生物合成研究进展*
闫伟欢1,2,黄统1,2,洪解放1,马媛媛1,3,4,5,**()
1天津大学石油化工技术开发中心 天津 300072
2天津大学化工学院生物化工系 天津 300072
3天津大学绿色合成与转化教育部重点实验室 天津 300072
4天津大学内燃机燃烧学国家重点实验室 天津 300072
5生物基材料与绿色造纸国家重点实验室 齐鲁工业大学(山东省科学院) 济南 250353
Recent Advances in Butanol Biosynthesis of Escherichia coli
YAN Wei-huan1,2,HUANG Tong1,2,HONG Jie-fang1,MA Yuan-yuan1,3,4,5,**()
1 Tianjin R&D Center for Petrochemical Technology, Tianjin University, Tianjin 300072, China
2 Department of Biochemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
3 Key Laboratory for Green Chemical Technology of Ministry of Education, Tianjin University, Tianjin 300072, China
4 State Key Laboratory of Engines, Tianjin University, Tianjin 300072, China
5 State Key Laboratory of Biobased Material and Green Papermaking,Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
 全文: PDF(6428 KB)   HTML
摘要:

生物丁醇作为一种重要的化学品和石油基燃料的替代品引起了人们的广泛关注。大肠杆菌(Escherichia coli)是生物合成化学品的优良底盘菌株,已在其体内构建了丁醇的生物合成途径。但大肠杆菌合成丁醇存在:(1)代谢通量非最优;(2)辅因子和氧化还原不平衡;(3)丁醇产量和产率低等问题,为此,从高效酶选择、碳代谢流调控、辅因子调控、丁醇生产和工艺等方面已经对丁醇合成途径和丁醇发酵进行了优化。从该角度出发阐述近几年来大肠杆菌生物合成丁醇的研究进展,并展望了利用工程大肠杆菌生产丁醇的研究方向,旨在为应用其进行高效的丁醇生产提供参考。

关键词: 大肠杆菌丁醇生物合成代谢工程辅因子    
Abstract:

Biobutanol has recently attracted considerable attentions as an important commodity chemical and alternative for petroleum-based fuels. Engineered butanol synthesis pathway has been introduced into E.coli, which is an excellent chassis strain for biosynthetic chemicals. However, the produce of butanol has often been limited by the problems as follows: (1) Non-optimal metabolic flux; (2) Imbalanced CoA and reducing power; (3) Low butanol yields and titer and other issues. Herein, recent advances in butanol biosynthesis of E.coli are summarized and prospected, including screening for high-efficient enzymes, optimization of carbon flux towards butanol, adjusting cofactor supply and optimization of fermentation strategies, which would provide a theoretical basis for high-efficient production of butanol.

Key words: E. coli    1-Butanol    Biosynthesis    Metabolic engineering    Cofactor
收稿日期: 2020-04-22 出版日期: 2020-10-12
ZTFLH:  Q819  
基金资助: * 生物基材料与绿色造纸国家重点实验室开放基金(KF201815);天津市自然科学基金(18JCYBJC24200);国家自然科学基金(NSFC 30900033)
通讯作者: 马媛媛     E-mail: myy@tju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
闫伟欢
黄统
洪解放
马媛媛

引用本文:

闫伟欢,黄统,洪解放,马媛媛. 丁醇在大肠杆菌中的生物合成研究进展*[J]. 中国生物工程杂志, 2020, 40(9): 69-76.

YAN Wei-huan,HUANG Tong,HONG Jie-fang,MA Yuan-yuan. Recent Advances in Butanol Biosynthesis of Escherichia coli. China Biotechnology, 2020, 40(9): 69-76.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2004033        https://manu60.magtech.com.cn/biotech/CN/Y2020/V40/I9/69

底盘菌株 合成途径构建及优化 丁醇生产 参考文献
BW25113 过表达atoB, hbd, crt, bcd-etf, adhE2基因;敲除adhE, ldhA, fnr, frdBC, pta基因 TB 培养基(2%甘油)中试管微氧发酵24h,产量为0.552g/L [8]
JCL109 过表达thl, hbd, crt, bcd-etf, adhE2基因 M9 培养基中摇瓶发酵60h,产量为1.2g/L [9]
BW25113 过表达thrAfbrBC, leuABCD, ilvA, Kivd, adh2基因;敲除 metA, tdh, ilvB, ilvI, adhE基因 M9Y(5g/L酵母提取物)中摇瓶发酵4天,产量为1g/L [10-11]
MG1655 过表达crp*, yqeF, fucO,突变atoC;敲除 fadR::IS5, arcA, pta, adhE, frdA, yqhD, eutE基因 基本培养基中微氧发酵罐发酵48h,产量为14g/L,产率为33% [12]
MG1655 lacIQ 过表达atoB, fadB, fadE, adhE(G568A)基因 M9 培养基中试管发酵24h,产量为0.614g/L [11]
MG1655 DE3 过表达hgdH, gctAB, ter, gcdH, adhE, hgdABC基因 HDM 培养基中发酵罐发酵50h,产量为0.085g/L [13]
AFP111 过表达cat1, sucD, hbd, cat2, abfD, adhE, bcd-etfB-etfA基因;敲除ldhA, pflB基因 LB 培养基(1.5%葡萄糖)中摇瓶发酵60h,产量为0.26g/L [14]
DH1 过表达phaA, hbd, crt, ter, adhE2, aceEF.lpd基因 TB 培养基中摇瓶发酵3天,产量为4.65g/L,产率为28% [15-16]
JCL166 过表达atoB, hbd, crt, ter, adhE2, fdhCB基因;敲除adhE, ldhA, frdBC, pta基因 TB 培养基(1.5%葡萄糖)中摇瓶发酵75h,产量和产率为15g/L和30.8% [17]
JCL299F 过表达atoB, hbd, crt, ter, fdhCB基因;优化adhE2基因RBS强度;敲除adhE, ldhA, frdBC, pta基因 TB 培养基(2%葡萄糖)中摇瓶发酵78h,产量为18.3g/L [18]
BW25113 过表达bld, adhs, phaA, phaB, phaJter基因;敲除ldhA基因 M9 培养基(3%葡萄糖)中分批发酵28h,产量为8.6g/L,产率为0.13% [19]
BW25113 过表达hbd, ter, adhE2, crt, atoB, fdh基因;优化tercrt基因RBS强度;敲除ldhA, adhE, frdBC, ackA-pta, yqhD, eutE, hyc-hyp, fdhF, mdh, pykA, maeB, mdh, yieP, stpA, yqeG, yagM, yciA, poxB基因 M9Y 培养基(7%葡萄糖)中分批发酵70h,产量为20g/L [20-24]
表1  大肠杆菌工程菌的丁醇生产
图1  大肠杆菌中构建的产丁醇途径
[1] Saini M, Hong Chen M, Chiang C J, et al. Potential production platform of n-butanol in Escherichia coli. Metabolic Engineering, 2015,27:76-82.
pmid: 25461833
[2] Dürre P. Fermentative production of butanol-the academic perspective. Current Opinion in Biotechnology, 2011,22(3):331-336.
pmid: 21565485
[3] Mussatto S I, Dragone G, Guimarães P M R, et al. Technological trends, global market, and challenges of bio-ethanol production . Biotechnology Advances, 2010,28(6):817-830.
pmid: 20630488
[4] Formanek J, Mackie R, Blaschek H P. Enhanced Butanol Production by Clostridium beijerinckii BA101 grown in semidefined P2 medium containing 6 percent maltodextrin or glucose. Applied & Environmental Microbiology, 1997,63(6):2306-2310.
doi: 10.1128/AEM.63.6.2306-2310.1997 pmid: 16535628
[5] Jang Y S, Lee S Y. Recent advances in biobutanol production. Industrial Biotechnology, 2015,11(6):316-321.
[6] Dong H, Zhao C, Zhang T, et al. Bioreactor engineering research and industrial applications I. Berlin: Springer Berlin Heidelberg, 2015: 155:141-163.
[7] Jeong H, Lee S W, Kim S H, et al. Global functional analysis of butanol-sensitive Escherichia coli and its evolved butanol-tolerant strain. J Microbiol Biotechnology, 2017,27(6):1171-1179.
[8] Atsumi S, Cann A F, Connor M R, et al. Metabolic engineering of Escherichia coli for 1-butanol production. Metabolic Engineering, 2008,10(6):305-311.
[9] Inui M, Suda M, Kimura S, et al. Expression of Clostridium acetobutylicum butanol synthetic genes in Escherichia coli. Applied Microbiology and Biotechnology, 2008,77(6):1305-1316.
pmid: 18060402
[10] Atsumi S, Hanai T, Liao J C. Non-fermentative pathways for synthesis of branched-chain higher alcohols as biofuels. Nature, 2008,451(7174):86-89.
[11] Shen C R, Liao J C. Metabolic engineering of Escherichia coli for 1-butanol and 1-propanol production via the keto-acid pathways. Metabolic Engineering, 2008,10(6):312-320.
pmid: 18775501
[12] Dellomonaco C, Clomburg J M, Miller E N, et al. Engineered reversal of the β-oxidation cycle for the synthesis of fuels and chemicals. Nature, 2011,476(7360):355-359.
pmid: 21832992
[13] Ferreira S, Pereira R, Liu F, et al. Discovery and implementation of a novel pathway for n-butanol production via 2-oxoglutarate. Biotechnology for Biofuels, 2019,12(1):230.
[14] 姜岷, 张秋妍, 郭亭, 等. 产丁醇基因工程菌的构建、菌株及其应用: 中国,CN201210067927.8. 2012-08-01[2020-04-22]. https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=SCPD&dbname=SCPD2012&filename=CN102618569A&v=MzE1MTUwQzVoNkRRNU56eGNWN1RkNlRRN2ozUkphZTdLV1JicVdadU51RXl6c1ViMD1KaU82SHJHK0g5bkpxWVk=.
Jiang M, Zhang Q Y, Guo T, et al. Construction, strain and application of genetic engineered butanol producing strain: China,CN201210067927.8. 2012-08-01[2020-04-22]. https://kns.cnki.net/kcms/detail/detail.aspx?dbcode=SCPD&dbname=SCPD2012&filename=CN102618569A&v=MzE1MTUwQzVoNkRRNU56eGNWN1RkNlRRN2ozUkphZTdLV1JicVdadU51RXl6c1ViMD1KaU82SHJHK0g5bkpxWVk=
[15] Bond-Watts , B.B. , Chang , et al. Enzyme mechanism as a kinetic control element for designing synthetic biofuel pathways. Nature Chemical Biology, 2011,7(4):222-227.
doi: 10.1038/nchembio.537 pmid: 21358636
[16] Chang Michelle C Y, Bond-Watts B, Wen M, et al. Synthetic pathways for biofuel synthesis: United States,US201213708824. 2014-01-02[2020-04-22] https://xueshu.baidu.com/usercenter/paper/show?paperid=e82b88cc61a899e35eed97bed59d470f&site=xueshu_se&hitarticle=1.
[17] Shen C R, Lan E I, Dekishima Y, et al. Driving forces enable high-titer anaerobic 1-butanol synthesis in Escherichia coli. Appl. Environ. Microbiol., 2011,77(9):2905-2915.
[18] Ohtake T, Pontrelli S, Laviña W A, et al. Metabolomics-driven approach to solving a CoA imbalance for improved 1-butanol production in Escherichia coli . Metabolic Engineering, 2017,41:135-143.
[19] Kataoka N, Vangnai A S, Pongtharangkul T, et al. Construction of CoA-dependent 1-butanol synthetic pathway functions under aerobic conditions in Escherichia coli. Journal of Biotechnology, 2015,204:25-32.
pmid: 25865277
[20] Dong H, Zhao C, Zhang T, et al. A systematically chromosomally engineered Escherichia coli efficiently produces butanol. Metabolic Engineering, 2017,44:284-292.
pmid: 29102594
[21] 姜岷, 张秋妍, 欧阳平凯, 等. 一种构建高产丁醇菌株的方法与应用: 中国,CN201510924308.X. 2016-03-02[2020-04-22]. https://kns.cnki.net/kns/brief/default_result.aspx.
Jiang M, Zhang Q Y, Ou Yang P K, et al. A method of constructing high-butanol-producing strain and its application. China,CN201510924308.X. 2016-03-02[2020-04-22]. https://kns.cnki.net/kns/brief/default_result.aspx.
[22] 董红军, 赵春华, 张延平, 等. 一种提高大肠杆菌生产丁醇的方法: 中国,CN201610035150.5. 2016-04-20[2020-04-22]. https://kns.cnki.net/kns/brief/default_result.aspx.
Dong H J, Zhao C H, Zhang Y P, et al. A method for improving the production of butanol by Escherichia coli. China, CN201610035150.5. 2016-04-20[2020-04-22]. https://kns.cnki.net/kns/brief/default_result.aspx.
[23] 董红军, 赵春华, 张延平, 等. 一种丁酸产量低且丁醇产量高的工程菌及其构建方法与应用: 中国,CN201610034891.1. 2016-05-11[2020-04-22]. https://kns.cnki.net/kns/brief/default_result.aspx.
Dong H J, Zhao C H, Zhang Y P, et al. Construction of engineering bacteria with low butyric acid output and high butanol output and its application. China, CN201610034891.1. 2016-05-11[2020-04-22]. https://kns.cnki.net/kns/brief/default_result.aspx.
[24] 董红军, 赵春华, 李寅, 等. 高产丁醇的大肠杆菌基因工程菌及其构建方法与应用: 中国, CN201610204922.3. 2017-10-24[2020-04-22]. https://kns.cnki.net/kns/brief/default_result.aspx.
Dong H J, Zhao C H, Li Y, et al. A method of constructing high-butanol-producing engineered Escherichia coli strain and its application. China, CN201610204922.3. 2017-10-24[2020-04-22]. https://kns.cnki.net/kns/brief/default_result.aspx.
[25] Holland-Staley C A, Lee K S, Clark D P, et al. Aerobic activity of Escherichia coli alcohol dehydrogenase is determined by a single amino acid. Journal of BACTERiology, 2000,182(21):6049-6054.
[26] Heo M J, Jung H M, Um J, et al. Controlling citrate synthase expression by CRISPR/Cas9 genome editing for n-butanol production in Escherichia coli. ACS Synthetic Biology, 2017,6(2):182-189.
pmid: 27700055
[27] Gulevich A Y, Skorokhodova A Y, Sukhozhenko A V, et al. Metabolic engineering of Escherichia coli for 1-butanol biosynthesis through the inverted aerobic fatty acid β-oxidation pathway. Biotechnology Letters. 2012,34(3):463-469.
[28] Dong H, Zhao C, Zhang T, et al. Engineering Escherichia coli cell factories for n-butanol production//Bioreactor Engineering Research and Industrial Applications I. Berlin:Springer Berlin Heidelberg, 2015: 141-163.
[29] Kim S K, Seong W, Han G H, et al. CRISPR interference-guided multiplex repression of endogenous competing pathway genes for redirecting metabolic flux in Escherichia coli. Microbial Cell Factories, 2017,16(1):188.
doi: 10.1186/s12934-017-0802-x pmid: 29100516
[30] Nitta K, Laviña W A, Pontrelli S, et al. Metabolome analysis revealed the knockout of glyoxylate shunt as an effective strategy for improvement of 1-butanol production in transgenic Escherichia coli. Journal of Bioscience and Bioengineering, 2019,127(3):301-308.
doi: 10.1016/j.jbiosc.2018.08.013 pmid: 30482596
[31] Maharjan R P, Yu P L, Seeto S, et al. The role of isocitrate lyase and the glyoxylate cycle in Escherichia coli growing under glucose limitation. Research in Microbiology, Elsevier, 2005,156(2):178-183.
[32] Wang Q, Liu L, Shi J, et al. Engineering Escherichia coli for autoinducible production of n-butanol. Electronic Journal of Biotechnology, 2015,18(2):138-142.
[33] 秦义, 董志姚, 刘立明, 等. 工业微生物中NADH的代谢调控. 生物工程学报, 2009,25(2):161-169.
Qin Y, Dong Z T, Liu L M, et al. Manipulation of NADH metabolism in industrial strains. Chinese Journal of Biotechnology, 2009,25(2):161-169.
[34] Pontrelli S, Chiu T Y, Lan E I, et al. Escherichia coli as a host for metabolic engineering. Metabolic Engineering, 2018,50:16-46.
doi: 10.1016/j.ymben.2018.04.008 pmid: 29689382
[35] Lim J H, Seo S W, Kim S Y, et al. Model-driven rebalancing of the intracellular redox state for optimization of a heterologous n-butanol pathway in Escherichia coli. Metabolic Engineering, 2013,20:56-62.
[36] Wilkinson K D, Williams C H. NADH inhibition and NAD activation of Escherichia coli lipoamide Dehydrogenase Catalyzing the NADH-Lipoamide Reaction. Journal of Biological Chemistry, 1981,256(5):2307-2314.
pmid: 7007381
[37] Kim Y, Ingram L O, Shanmugam K T. Dihydrolipoamide dehydrogenase mutation alters the NADH sensitivity of pyruvate dehydrogenase complex of Escherichia coli K-12. Journal of Bacteriology, 2008,190(11):3851-3858.
pmid: 18375566
[38] Saini M, Li S Y, Wang Z W, et al. Systematic engineering of the central metabolism in Escherichia coli for effective production of n-butanol. Biotechnology for Biofuels, 2016,9(1):69-78.
doi: 10.1186/s13068-016-0467-4
[39] 赵云鹏, 赛尼·莫卡西, 姜中人. 可生产正丁醇的菌株及其应用: 中国, CN201510531354.3. 2015-11-18[2020-04-22]. https://kns.cnki.net/kns/brief/default_result.aspx.
Zhao Y P, Mocassi S, Jiang Z R, et al. A butanol-production strain and its application. China, CN201510531354.3. 2015-11-18[2020-04-22]. https://kns.cnki.net/kns/brief/default_result.aspx.
[40] Wen R C, Shen C R. Self-regulated 1-butanol production in Escherichia coli based on the endogenous fermentative control. Biotechnology for Biofuels, 2016,9(1):267.
doi: 10.1186/s13068-016-0680-1
[41] 赵云鹏. 分别可生产丁酸和正丁醇的菌株及生成正丁醇的方法: 中国, CN201410050883.7. 2015-07-22[2020-04-22]. https://kns.cnki.net/kns/brief/default_result.aspx.
Zhao Y P. A butanol-production and butyric acid-production strain and method for producing n-butanol. China, CN201410050883.7. 2015-07-22[2020-04-22]. https://kns.cnki.net/kns/brief/default_result.aspx.
[42] 王庆龙, 刘莉, 史吉平, 等. 丁醇基因在大肠杆菌中表达的现状与展望. 中国生物工程杂志, 2014,34(6):90-97.
doi: 10.13523/j.cb.20140613
Wang Q L, Liu L, Shi J P, et al. Current status and prospects of the expression of butanol pathway in Escherichia coli. China Biotechnology, 2014,34(6):90-97.
doi: 10.13523/j.cb.20140613
[43] 贺雪婷, 张敏华, 洪解放, 等. 大肠杆菌丁醇耐受机制及耐受菌选育研究进展. 中国生物工程杂志, 2018,38(9):81-87.
He X T, Zhang M H, Hong J F, et al. Research progress on butanol-tolerant strain and tolerance mechanism of Escherichia coli. China Biotechnology, 2018,38(9):81-87.
[44] Chin W C, Lin K H, Liu C C, et al. Improved n-butanol production via co-expression of membrane-targeted tilapia metallothionein and the clostridial metabolic pathway in Escherichia coli. BMC Biotechnology, 2017,17(1):36.
doi: 10.1186/s12896-017-0356-3 pmid: 28399854
[45] Zhao C, Sinumvayo J P, Zhang Y, et al. Design and development of a “Y-shaped” microbial consortium capable of simultaneously utilizing biomass sugars for efficient production of butanol. Metabolic Engineering, 2019,55:111-119.
pmid: 31251983
[46] 马泽林, 刘家亨, 黄序, 等. 微生物利用木质纤维素的研究进展. 中国生物工程杂志, 2017,37(6):124-133.
Ma Z L, Liu J H, Huang X, et al. Research progress on utilization of lignocellulosic biomass by microorganisms. China Biotechnology, 2017,37(6):124-133.
[47] 卞化, 孙新晓, 袁其朋, 等. 代谢工程改造异养微生物固定CO2研究进展. 生物工程学报, 2019,35(2):195-203.
doi: 10.13345/j.cjb.180267 pmid: 30806049
Bian H, Sun X X, Yuan Q P, et al. Advances in metabolic engineering of heterotrophic microorganisms for CO2 fixation: a review. Chinese Journal of Biotechnology, 2019,35(2):195-203.
doi: 10.13345/j.cjb.180267 pmid: 30806049
[48] Antonovsky N, Gleizer S, Noor E, et al. Sugar synthesis from CO2 in Escherichia coli. Cell, 2016,166(1):115-125.
pmid: 27345370
[49] Gleizer S, Ben-Nissan R, Bar-On Y M, et al. Conversion of Escherichia coli to generate all biomass carbon from CO2. Cell, 2019,179(6):1255-1263.
pmid: 31778652
[50] Choi K R, Jang W D, Yang D, et al. Systems metabolic engineering strategies: integrating systems and synthetic biology with metabolic engineering. Trends in Biotechnology, 2019,37(8):817-837.
pmid: 30737009
[1] 马宁,王汉杰. 光遗传学在细菌生产调控中的应用进展[J]. 中国生物工程杂志, 2021, 41(9): 101-109.
[2] 乔圣泰,王曼琦,徐慧妮. 番茄SlTpx原核表达蛋白的体外功能分析*[J]. 中国生物工程杂志, 2021, 41(8): 25-32.
[3] 张恒,刘慧燕,潘琳,王红燕,李晓芳,王彤,方海田. 生物法合成γ-氨基丁酸的研究策略*[J]. 中国生物工程杂志, 2021, 41(8): 110-119.
[4] 李冰,张传波,宋凯,卢文玉. 生物合成稀有人参皂苷的研究进展*[J]. 中国生物工程杂志, 2021, 41(6): 71-88.
[5] 苗轶男,李敬知,王帅,李春,王颖. 萜烯生物合成中关键酶的研究进展*[J]. 中国生物工程杂志, 2021, 41(6): 60-70.
[6] 何若昱,林福玉,高向东,刘金毅. 信号肽在大肠杆菌分泌系统中的研究与应用进展[J]. 中国生物工程杂志, 2021, 41(5): 87-93.
[7] 翟君叶,成旭,孙泽敏,李春,吕波. 毛蕊花糖苷的生物合成研究进展[J]. 中国生物工程杂志, 2021, 41(5): 94-104.
[8] 李媛媛,李妍,曹英秀,宋浩. 黄素介导的胞外电子转移研究与工程改造*[J]. 中国生物工程杂志, 2021, 41(10): 89-99.
[9] 王光路, 王梦园, 周忆菲, 马科, 张帆, 杨雪鹏. 吡咯喹啉醌生物合成研究进展 *[J]. 中国生物工程杂志, 2021, 41(1): 103-113.
[10] 吴弘轩, 杨金花, 沈培杰, 李清晨, 黄建忠, 祁峰. 利用大肠杆菌细胞工厂生产吲哚-3-乙酸的研究 *[J]. 中国生物工程杂志, 2021, 41(1): 12-19.
[11] 郭二鹏, 张建志, 司同. 羊毛硫肽的高通量工程改造方法新进展 *[J]. 中国生物工程杂志, 2021, 41(1): 30-41.
[12] 刘啸尘, 范代娣, 杨帆, 武占省. 人参皂苷化合物生物合成进展 *[J]. 中国生物工程杂志, 2021, 41(1): 80-93.
[13] 饶海密,梁冬梅,李伟国,乔建军,财音青格乐. 真菌芳香聚酮化合物的合成生物学研究进展*[J]. 中国生物工程杂志, 2020, 40(9): 52-61.
[14] 段海荣,魏赛金,黎循航. 铜绿假单胞菌中鼠李糖脂生物合成的研究进展*[J]. 中国生物工程杂志, 2020, 40(9): 43-51.
[15] 邓廷山,武国干,孙宇,唐雪明. 苯乳酸生物合成的研究进展*[J]. 中国生物工程杂志, 2020, 40(9): 62-68.