Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2020, Vol. 40 Issue (9): 36-42    DOI: 10.13523/j.cb.2004051
综述     
动物外泌体分离方法的研究进展*
邱金戈,刘德武,孙宝丽,李耀坤,郭勇庆,邓铭,柳广斌()
华南农业大学动物科学学院 广州 510642
Research Progress on Animal Exosome Isolation Methods
QIU Jin-ge,LIU De-wu,SUN Bao-li,LI Yao-kun,GUO Yong-qing,DENG Ming,LIU Guang-bin()
College of Animal Science, South China Agricultural University, Guangzhou 510642, China
 全文: PDF(869 KB)   HTML
摘要:

外泌体是一种由细胞分泌的细胞外囊泡,其广泛存在于各类生物液中,是细胞间信息交流的途径之一。由于外泌体内携带的核酸、蛋白质及脂质等功能性物质可作为生物标记用于动物生理诊断,也可作为信息传输载体用于调节动物生理状态以及治疗动物疾病,因而受到广泛的研究,开发潜力巨大。建立成熟稳定且方便快捷的外泌体分离手段是保证外泌体相关研究顺利开展的前提。以下对当前动物外泌体分离的主要方法进行了综述,比较了不同分离手段的特点,以此为相关技术的进一步开发与后续的动物外泌体研究提供方法及理论参考。

关键词: 外泌体分离方法生物标记    
Abstract:

Exosomes, widely existing in various biological fluids, are one type of extracellular vesicles secreted by cells and one of carriers of cell-cell communication. The functional materials carried by exosomes, such as nucleic acids, proteins and lipids, are considered as biomarkers for animal physiological diagnosis and as communication carriers for animal physiological states regulation or diseases treatment. Exosomes have been extensively studied as their great development potential. The establishment of mature, stable, convenient and fast exosome isolation methods is a prerequisite for ensuring the smooth progress of exosome related research. Summarized current main methods of animal exosome isolation and compared the characteristics of different isolation methods, the following provides methodological and theoretical references for the further development of related technologies and subsequent animal exosome research.

Key words: Exosome    Isolation method    Biomarker
收稿日期: 2020-04-26 出版日期: 2020-10-12
ZTFLH:  Q813  
基金资助: * 广东省畜禽地方品种保护与开发利用提升工程(2018-143);广东省现代农业产业技术体系(2019KJ127);阳江市科技计划(2018032)
通讯作者: 柳广斌     E-mail: gbliu@scau.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
邱金戈
刘德武
孙宝丽
李耀坤
郭勇庆
邓铭
柳广斌

引用本文:

邱金戈,刘德武,孙宝丽,李耀坤,郭勇庆,邓铭,柳广斌. 动物外泌体分离方法的研究进展*[J]. 中国生物工程杂志, 2020, 40(9): 36-42.

QIU Jin-ge,LIU De-wu,SUN Bao-li,LI Yao-kun,GUO Yong-qing,DENG Ming,LIU Guang-bin. Research Progress on Animal Exosome Isolation Methods. China Biotechnology, 2020, 40(9): 36-42.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2004051        https://manu60.magtech.com.cn/biotech/CN/Y2020/V40/I9/36

Isolation methods Advantages Disadvantages References
基于超速离心的外泌体分离 差速离心操作简单,密度梯度分离的外泌体完整性好,污染程度小 设备昂贵,耗时,差速离心会破坏外泌体结构,密度梯度离心操作难掌握 [24-28, 31, 37-39, 48]
基于免疫亲和力的外泌体分离 高特异性分离外泌体纯度高,分离精准 样本容量小,产量低,受制于抗体的开发程度,抗体成本高,初始样品需预处理 [26-27, 31, 34]
外泌体沉淀分离 样本容量大,操作简单,外泌体产量高 化学分离污染程度大,沉淀需过夜孵化,初始样品需预处理 [24, 31, 34, 37-40, 46]
基于分子尺寸的外泌体分离 分离快速,物理分离污染程度小 过滤系统容易堵塞,造成产量低,初始样品需预处理 [24-25, 31, 34, 37, 46-48]
基于微流体的外泌体分离 分离快速,便携,自动化集成化程度高 样品容量小,未大量投入使用 [58-59]
表1  外泌体分离方法对比
[1] Wolf P. The nature and significance of platelet products in human plasma. British Journal of Haematology, 1967,13(3):269-288.
doi: 10.1111/j.1365-2141.1967.tb08741.x
[2] Harding C, Heuser J, Stahl P. Receptor-mediated endocytosis of transferrin and recycling of the transferrin receptor in rat reticulocytes. The Journal of Cell Biology, 1983,97(2):329-339.
[3] Pan B T, Teng K, Wu C, et al. Electron microscopic evidence for externalization of the transferrin receptor in vesicular form in sheep reticulocytes. The Journal of Cell Biology, 1985,101(3):942-948.
pmid: 2993317
[4] Johnstone R M, Adam M, Hammond J, et al. Vesicle formation during reticulocyte maturation. Association of plasma membrane activities with released vesicles (exosomes). Journal of Biological Chemistry, 1987,262(19):9412-9420.
pmid: 3597417
[5] Valadi H, Ekström K, Bossios A, et al. Exosome-mediated transfer of mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nature Cell Biology, 2007,9(6):654-659.
[6] Skog J, Würdinger T, Van Rijn S, et al. Glioblastoma microvesicles transport RNA and proteins that promote tumour growth and provide diagnostic biomarkers. Nature Cell Biology, 2008,10(12):1470-1476.
[7] Yáñez-Mó M, Siljander P R M, Andreu Z, et al. Biological properties of extracellular vesicles and their physiological functions. Journal of Extracellular Vesicles, 2015,4(1):27066.
[8] Koh Y, Peiris H, Vaswani K, et al. Characterization of exosomes from body fluids of dairy cows. Journal of Animal Science, 2017,95(9):3893-3904.
pmid: 28992005
[9] Smith Z J, Lee C, Rojalin T, et al. Single exosome study reveals subpopulations distributed among cell lines with variability related to membrane content. Journal of Extracellular Vesicles, 2015,4(1):28533.
[10] Zaborowski M P, Balaj L, Breakefield X O, et al. Extracellular vesicles: composition, biological relevance, and methods of study. Bioscience, 2015,65(8):783-797.
pmid: 26955082
[11] Bebelman M P, Smit M J, Pegtel D M, et al. Biogenesis and function of extracellular vesicles in cancer. Pharmacology Therapeutics, 2018,188 : 1-11.
[12] Hessvik N P, Llorente A. Current knowledge on exosome biogenesis and release. Cellular and Molecular Life Sciences, 2018,75(2):193-208.
pmid: 28733901
[13] Kowal J, Tkach M, Théry C. Biogenesis and secretion of exosomes. Current Opinion in Cell Biology, 2014,29 : 116-125.
pmid: 24959705
[14] Colombo M, Raposo G, Théry C. Biogenesis, secretion, and intercellular interactions of exosomes and other extracellular vesicles. Annual Review of Cell Developmental Biology, 2014,30:255-289.
pmid: 25288114
[15] Colombo M, Moita C, van Niel G, et al. Analysis of ESCRT functions in exosome biogenesis, composition and secretion highlights the heterogeneity of extracellular vesicles. J Cell Sci, 2013,126(24):5553-5565.
[16] Henne W M, Stenmark H, Emr S D. Molecular mechanisms of the membrane sculpting ESCRT pathway. Cold Spring Harbor Perspectives in Biology, 2013,5(9):a016766.
pmid: 24003212
[17] Chairoungdua A, Smith D L, Pochard P, et al. Exosome release of β-catenin: a novel mechanism that antagonizes Wnt signaling. Journal of Cell Biology, 2010,190(6):1079-1091.
pmid: 20837771
[18] Hurwitz S N, Conlon M M, Rider M A, et al. Nanoparticle analysis sheds budding insights into genetic drivers of extracellular vesicle biogenesis. Journal of Extracellular Vesicles, 2016,5(1):31295.
[19] Bracht J W P, Mayo-de-las-Casas C, Berenguer J, et al. The present and future of liquid biopsies in non-small cell lung cancer: combining four biosources for diagnosis, prognosis, prediction, and disease monitoring. Current Oncology Reports, 2018,20(9):70.
doi: 10.1007/s11912-018-0720-z
[20] Melo S A, Luecke L B, Kahlert C, et al. Glypican-1 identifies cancer exosomes and detects early pancreatic cancer. Nature Cell Biology, 2015,523(7559):177-182.
[21] Sandfeld-Paulsen B, Aggerholm-Pedersen N, Baek R, et al. Exosomal proteins as prognostic biomarkers in non‐small cell lung cancer. Molecular Oncology, 2016,10(10):1595-1602.
doi: 10.1016/j.molonc.2016.10.003 pmid: 27856179
[22] Théry C, Amigorena S, Raposo G, et al. Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Current Protocols in Cell Biology, 2006,30(1):3-22.
[23] Zarovni N, Corrado A, Guazzi P, et al. Integrated isolation and quantitative analysis of exosome shuttled proteins and nucleic acids using immunocapture approaches. Methods, 2015,87 : 46-58.
doi: 10.1016/j.ymeth.2015.05.028 pmid: 26044649
[24] Lobb R J, Becker M, Wen Wen S, et al. Optimized exosome isolation protocol for cell culture supernatant and human plasma. Journal of Extracellular Vesicles, 2015,4(1):27031.
[25] Baranyai T, Herczeg K, Onódi Z, et al. Isolation of exosomes from blood plasma: qualitative and quantitative comparison of ultracentrifugation and size exclusion chromatography methods. PLoS One, 2015,10(12):e0145686.
doi: 10.1371/journal.pone.0145686 pmid: 26690353
[26] Jeppesen D K, Fenix A M, Franklin J L, et al. Reassessment of exosome composition. Cell, 2019,177(2):428-445.
pmid: 30951670
[27] Greening D W, Xu R, Ji H, et al. A protocol for exosome isolation and characterization: evaluation of ultracentrifugation, density-gradient separation, and immunoaffinity capture methods. New York: Humana Press, 2015:179-209.
[28] Yamashita T, Takahashi Y, Nishikawa M, et al. Effect of exosome isolation methods on physicochemical properties of exosomes and clearance of exosomes from the blood circulation. European Journal of Pharmaceutics and Biopharmaceutics, 2016,98 : 1-8.
pmid: 26545617
[29] Li P, Kaslan M, Lee S H, et al. Progress in exosome isolation techniques. Theranostics, 2017,7(3):789-804.
pmid: 28255367
[30] Doyle L M, Wang M Z. Overview of extracellular vesicles, their origin, composition, purpose, and methods for exosome isolation and analysis. Cells, 2019,8(7):727.
[31] Patel G K, Khan M A, Zubair H, et al. Comparative analysis of exosome isolation methods using culture supernatant for optimum yield, purity and downstream applications. Scientific Reports, 2019,9(1):1-10.
pmid: 30626917
[32] Crescitelli R, Lässer C, Szabó T G, et al. Distinct RNA profiles in subpopulations of extracellular vesicles: apoptotic bodies, microvesicles and exosomes. Journal of Extracellular Vesicles, 2013,2(1):20677.
[33] Kowal J, Arras G, Colombo M, et al. Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes. Proceedings of the National Academy of Sciences, 2016,113(8):E968-E977.
[34] Macías M, Rebmann V, Mateos B, et al. Comparison of six commercial serum exosome isolation methods suitable for clinical laboratories. Effect in cytokine analysis. Clinical Chemistry Laboratory Medicine, 2019,57(10):1539-1545.
pmid: 30990781
[35] Lewis G D, Metcalf T G. Polyethylene glycol precipitation for recovery of pathogenic viruses, including hepatitis A virus and human rotavirus, from oyster, water, and sediment samples. Appl Environ Microbiol, 1988,54(8):1983-1988.
doi: 10.1128/AEM.54.8.1983-1988.1988 pmid: 2845860
[36] Zeringer E, Barta T, Li M, et al. Strategies for isolation of exosomes. Cold Spring Harbor Protocols, 2015,2015(4):pdb.top074476.
pmid: 25655493
[37] Alvarez M L, Khosroheidari M, Ravi R K, et al. Comparison of protein, microRNA, and mRNA yields using different methods of urinary exosome isolation for the discovery of kidney disease biomarkers. Kidney International, 2012,82(9):1024-1032.
pmid: 22785172
[38] Helwa I, Cai J, Drewry M D, et al. A comparative study of serum exosome isolation using differential ultracentrifugation and three commercial reagents. PLoS One, 2017,12(1):e0170628.
[39] Tang Y T, Huang Y Y, Zheng L, et al. Comparison of isolation methods of exosomes and exosomal RNA from cell culture medium and serum. International Journal of Molecular Medicine, 2017,40(3):834-844.
[40] Ding M, Wang C, Lu X, et al. Comparison of commercial exosome isolation kits for circulating exosomal microRNA profiling. Analytical Bioanalytical Chemistry, 2018,410(16):3805-3814.
pmid: 29671027
[41] Zhang M, Jin K, Gao L, et al. Methods and technologies for exosome isolation and characterization. Small Methods, 2018,2(9):1800021.
[42] Cheruvanky A, Zhou H, Pisitkun T, et al. Rapid isolation of urinary exosomal biomarkers using a nanomembrane ultrafiltration concentrator. American Journal of Physiology-Renal Physiology, 2007,292(5):F1657-F1661.
[43] Heinemann M L, Ilmer M, Silva L P, et al. Benchtop isolation and characterization of functional exosomes by sequential filtration. Journal of Chromatography A, 2014,1371 : 125-135.
pmid: 25458527
[44] Liu F, Vermesh O, Mani V, et al. The exosome total isolation chip. ACS Nano, 2017,11(11):10712-10723.
doi: 10.1021/acsnano.7b04878 pmid: 29090896
[45] Feng Y, Huang W, Wani M, et al. Ischemic preconditioning potentiates the protective effect of stem cells through secretion of exosomes by targeting Mecp2 via miR-22. PLoS One, 2014,9(2):e88685.
pmid: 24558412
[46] Martins T S, Catita J, Rosa I M, et al. Exosome isolation from distinct biofluids using precipitation and column-based approaches. PLoS One, 2018,13(6 ): e0198820.
pmid: 29889903
[47] Stranska R, Gysbrechts L, Wouters J, et al. Comparison of membrane affinity-based method with size-exclusion chromatography for isolation of exosome-like vesicles from human plasma. Journal of Translational Medicine, 2018,16(1):1.
pmid: 29316942
[48] Neerukonda S N, Egan N A, Patria J, et al. Comparison of exosomes purified via ultracentrifugation (UC) and total exosome isolation (TEI) reagent from the serum of Marek’s disease virus (MDV)-vaccinated and tumor-bearing chickens. Journal of Virological Methods, 2019,263 : 1-9.
doi: 10.1016/j.jviromet.2018.10.004 pmid: 30316797
[49] Musante L, Tataruch D, Gu D, et al. A simplified method to recover urinary vesicles for clinical applications, and sample banking. Scientific Reports, 2014,4 : 7532.
pmid: 25532487
[50] 廖泽荣, 李永瑞, 古乐, 等. 基于微流控芯片的细胞外囊泡分离技术研究进展. 色谱, 2019,37(4):343-347.
Liao Z R, Li Y R, Gu L, et al. Advances in microfluidic chip-based extracellular vesicle separation. Chinese Journal of Chromatography, 2019,37(4):343-347.
[51] Chen C, Skog J, Hsu C H, et al. Microfluidic isolation and transcriptome analysis of serum microvesicles. Lab on a Chip, 2010,10(4):505-511.
pmid: 20126692
[52] Davies R T, Kim J, Jang S C, et al. Microfluidic filtration system to isolate extracellular vesicles from blood. Lab on a Chip, 2012,12(24):5202-5210.
doi: 10.1039/c2lc41006k pmid: 23111789
[53] Wang Z, Wu H-j, Fine D, et al. Ciliated micropillars for the microfluidic-based isolation of nanoscale lipid vesicles. Lab on a Chip, 2013,13(15):2879-2882.
pmid: 23743667
[54] Lee K, Shao H, Weissleder R, et al. Acoustic purification of extracellular microvesicles. ACS Nano, 2015,9(3):2321-2327.
[55] Wunsch B H, Smith J T, Gifford S M, et al. Nanoscale lateral displacement arrays for the separation of exosomes and colloids down to 20 nm. Nature Nanotechnology, 2016,11(11):936.
pmid: 27479757
[56] Liu C, Guo J, Tian F, et al. Field-free isolation of exosomes from extracellular vesicles by microfluidic viscoelastic flows. ACS Nano, 2017,11(7):6968-6976.
doi: 10.1021/acsnano.7b02277 pmid: 28679045
[57] Kang D, Oh S, Ahn S M, et al. Proteomic analysis of exosomes from human neural stem cells by flow field-flow fractionation and nanoflow liquid chromatography-tandem mass spectrometry. Journal of Proteome Research, 2008,7(8):3475-3480.
doi: 10.1021/pr800225z pmid: 18570454
[58] Liga A, Vliegenthart A, Oosthuyzen W, et al. Exosome isolation: a microfluidic road-map. Lab on a Chip, 2015,15(11):2388-2394.
doi: 10.1039/c5lc00240k pmid: 25940789
[59] Contreras-Naranjo J C, Wu H J, Ugaz V M. Microfluidics for exosome isolation and analysis: enabling liquid biopsy for personalized medicine. Lab on a Chip, 2017,17(21):3558-3577.
doi: 10.1039/c7lc00592j pmid: 28832692
[1] 王宇轩,陈婷,张永亮. MiR-148生物学功能研究进展*[J]. 中国生物工程杂志, 2021, 41(7): 74-80.
[2] 李开秀,司维. 间充质干细胞来源的外泌体治疗炎症性肠病研究进展*[J]. 中国生物工程杂志, 2021, 41(7): 66-73.
[3] 吕慧中,赵晨辰,朱链,许娜. 外泌体靶向递药在肿瘤治疗中的进展[J]. 中国生物工程杂志, 2021, 41(5): 79-86.
[4] 吴忧,辛林. 新的药物传递系统:外泌体作为药物载体递送*[J]. 中国生物工程杂志, 2020, 40(9): 28-35.
[5] 毛慧,吕玉华,朱丽慧,林月霞,廖荣荣. 外泌体在病毒感染诊断和治疗中的作用研究 *[J]. 中国生物工程杂志, 2020, 40(3): 104-110.
[6] 吴佳韩,江霖,陈婷,孙加节,张永亮,习欠云. 脂肪组织外泌体与机体其他组织互作研究进展 *[J]. 中国生物工程杂志, 2020, 40(3): 111-116.
[7] 杭海英,刘春春,任丹丹. 流式细胞术的发展、应用及前景 *[J]. 中国生物工程杂志, 2019, 39(9): 68-83.
[8] 刘艳,戴鹏,朱运峰. 外泌体作为肿瘤标志物的研究进展 *[J]. 中国生物工程杂志, 2019, 39(8): 74-79.
[9] 刘艳,戴鹏,朱运峰. 外泌体与自噬体相互关系研究进展 *[J]. 中国生物工程杂志, 2019, 39(6): 78-83.
[10] 李振虎,武云飞,潘莹,任兆翔,古向超,唐亮,王辛中,张娟. 肿瘤免疫治疗新药研发及生物标记物研究[J]. 中国生物工程杂志, 2019, 39(2): 38-48.
[11] 蒋析文,董子维,刘悦,朱小亚. 生物标记物与精准医疗研究进展[J]. 中国生物工程杂志, 2019, 39(2): 74-81.
[12] 吴升星, 李艳, 张海燕, 刘洋, 赖琼, 杨明. 诱导多能干细胞技术在药物研发领域中的前景[J]. 中国生物工程杂志, 2017, 37(11): 116-122.
[13] Rachael Ritchie, Marie-Ange Baucher. 在医疗保健领域开发和使用生物标记物的政策性问题[J]. 中国生物工程杂志, 2014, 34(1): 101-126.
[14] 元小宁, 朱运峰. 外泌体(Exosome)及其在肿瘤调控中的作用[J]. 中国生物工程杂志, 2013, 33(8): 111-117.
[15] 林福呈, 陈卫良, 龚鸿飞, 陈瑜, 李德葆. 病原真菌和细菌毒性基因的分离和鉴别[J]. 中国生物工程杂志, 1997, 17(5): 41-48.