Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2020, Vol. 40 Issue (9): 18-27    DOI: 10.13523/j.cb.2005056
技术与方法     
植物乳杆菌胞外多糖包覆的高稳定性硒纳米颗粒的制备及其抗氧化活性的研究*
陈东,李程程,史仲平()
江南大学生物工程学院 工业生物技术教育部重点实验室 无锡 214122
Lactobacillus plantarum Exopolysaccharide Coated High-Stable Selenium Nanoparticles and Its Antioxidant Activity
CHEN Dong,LI Cheng-cheng,SHI Zhong-ping()
Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
 全文: PDF(10715 KB)   HTML
摘要:

目的:以植物乳杆菌胞外多糖(EPS)作为稳定剂和包覆剂,安全、简便地制备高稳定性胞外多糖-纳米硒复合物(E-SeNPs),并研究其稳定性和抗氧化活性。方法:将植物乳杆菌胞外多糖引入亚硒酸钠与抗坏血酸的反应体系中,室温合成E-SeNPs。采用透射电子显微镜(TEM)、动态光散射(DLS)、紫外可见光谱(UV-vis)和傅里叶变换红外光谱(FT-IR)等技术对E-SeNPs的尺寸、形貌、结构及稳定性进行研究。此外,通过检测E-SeNPs的还原能力、ABTS+的清除率评估其体外抗氧化活性。结果:制备了具有良好分散性、稳定性的E-SeNPs,其平均粒径为(45.17±11.9)nm,带负电荷(-31.3mV)。同时,由于包覆作用,该E-SeNPs在水溶液中可稳定存在20天。最后,相同浓度下,E-SeNPs的还原力、ABTS+清除率都明显高于EPS和硒纳米颗粒(SeNPs),表现出了良好的抗氧化活性。结论:获得了一种新型的SeNPs稳定剂和包覆剂,简便、安全地制备了高稳定性、水分散性良好且具有良好抗氧化活性的SeNPs。

关键词: 植物乳杆菌胞外多糖硒纳米颗粒稳定性抗氧化活性    
Abstract:

Objective: The highly stable EPS-nano-selenium complexes (E-SeNPs) were safely and simply prepared using Lactobacillus plantarum exopolysaccharides (EPS) as stabilizers and coating agents. The stability and antioxidant activity were also studied. Methods: The size, morphology, structure and stability of E-SeNPs were measured by transmission electron microscopy (TEM), dynamic light scattering (DLS), ultraviolet-visible spectroscopy (UV-vis), and Fourier transform infrared spectroscopy (FT-IR). In addition, the antioxidant activity of E-SeNPs in vitro was evaluated by measuring the reducing ability and the clearance rate of ABTS+. Results: E-SeNPs with good dispersibility and stability were successfully prepared. The average particle size of the prepared E-SeNPs is (45.17±11.9)nm, with a negative charge (-31.3mV). Meanwhile, the E-SeNPs can be stable in the aqueous solution for 20 days. It was found by FT-IR analysis that the stability was due to the coating effect of EPS. Finally, at the same concentration, the reducing power and ABTS+ radical scavenging rate of E-SeNPs were significantly higher than those of EPS and selenium nanoparticles (SeNPs), showing good antioxidant activity. Conclusion: A new type of SeNPs stabilizer and coating agents were developed. It was simple and safe to prepare highly stable, water-dispersible SeNPs with good antioxidant activity.

Key words: Lactobacillus plantarum    Exopolysaccharide    Selenium nanoparticles    Stability    Antioxidant activity
收稿日期: 2020-05-25 出版日期: 2020-10-12
ZTFLH:  Q819  
基金资助: * 中国博士后科学基金(2019M651690)
通讯作者: 史仲平     E-mail: zpshi@jiangnan.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
陈东
李程程
史仲平

引用本文:

陈东,李程程,史仲平. 植物乳杆菌胞外多糖包覆的高稳定性硒纳米颗粒的制备及其抗氧化活性的研究*[J]. 中国生物工程杂志, 2020, 40(9): 18-27.

CHEN Dong,LI Cheng-cheng,SHI Zhong-ping. Lactobacillus plantarum Exopolysaccharide Coated High-Stable Selenium Nanoparticles and Its Antioxidant Activity. China Biotechnology, 2020, 40(9): 18-27.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2005056        https://manu60.magtech.com.cn/biotech/CN/Y2020/V40/I9/18

图1  植物乳杆菌分离、筛选和鉴定示意图
图2  不同比例条件下的硒纳米颗粒溶液图
图3  不同比例下合成的E-SeNPs紫外可见光吸收光谱
图4  不同比例下合成的E-SeNPs的粒径分布
图5  SeNPs、E-SeNP、EPS-R040的表征
图6  E-SeNPs、SeNPs在不同放大倍数下的透射电镜结果以及E-SeNPs的粒径统计和分布情况
图7  硒纳米粒子在4℃放置不同时间的照片
图8  不同比例下合成E-SeNPs的还原力
图9  不同比例下合成的E-SeNPs对ABTS+的清除率
[1] Kieliszek M. Selenium-fascinating microelement, properties and sources in food. Molecules, 2019,24(7):1298.
[2] Nazıroğlu M, Muhamad S, Pecze L. Nanoparticles as potential clinical therapeutic agents in Alzheimer’s disease: focus on selenium nanoparticles. Expert Review of Clinical Pharmacology, 2017,10(7):773-782.
pmid: 28463572
[3] Xu C L, Qiao L, Guo Y, et al. Preparation, characteristics and antioxidant activity of polysaccharides and proteins-capped selenium nanoparticles synthesized by Lactobacillus casei 393. Carbohydrate Polymers, 2018,195:576-585.
pmid: 29805014
[4] Zhang J S, Wang H L, Yan X X, et al. Comparison of short-term toxicity between Nano-Se and selenite in mice. Life Science, 2005,76(10):1099-1109.
[5] Wu S S, Sun K, Wang X, et al. Protonation of epigallocatechin-3-gallate (EGCG) results in massive aggregation and reduced oral bioavailability of EGCG-dispersed selenium nanoparticles. Journal of Agricultural and Food Chemistry, 2013,61(30):7268-7275.
doi: 10.1021/jf4000083 pmid: 23822637
[6] Shen Y H, Wang X F, Xie A J, et al. Synthesis of dextran/Se nanocomposites for nanomedicine application. Materials Chemistry and Physics, 2008,109(2-3):534-540.
doi: 10.1016/j.matchemphys.2008.01.016
[7] Chen T F, Wong Y S, Zheng W J, et al. Selenium nanoparticles fabricated in Undaria pinnatifida polysaccharide solutions induce mitochondria-mediated apoptosis in A375 human melanoma cells. Colloids and Surfaces B: Biointerfaces. 2008,67(1):26-31.
doi: 10.1016/j.colsurfb.2008.07.010 pmid: 18805679
[8] Yang F, Tang Q M, Zhong X Y, et al. Surface decoration by Spirulina polysaccharide enhances the cellular uptake and anticancer efficacy of selenium nanoparticles. International Journal of Nanomedicine. 2012,7:835-844.
[9] Wang J G, Zhang Y F, Yuan Y H, et al. Immunomodulatory of selenium nano-particles decorated by sulfated Ganoderma lucidum polysaccharides. Food and Chemical Toxicology. 2014,68:183-189.
[10] 邵丽. 产胞外多糖乳杆菌的筛选及其多糖的分离、结构和生物活性研究. 无锡: 江南大学, 2015.
Shao L. Screening of exopolysaccharide-producing Lactobacilli and separation, structure and bioactivities of exopolysaccharide. WuXi. Jiangnan University, 2015.
[11] Xiao Y D, Huang Q L, Zheng Z M, et al. Construction of a Cordyceps sinensis exopolysaccharide-conjugated selenium nanoparticles and enhancement of their antioxidant activities. International Journal of Biological Macromolecules, 2017,99:483-491.
[12] 王家辉, 刘杉杉, 张鑫, 等. 牛蒡不同部位多糖的抗氧化与抗凝血活性研究. 食品工业科技, 2020,41(6):305-310.
Wang J H, liu B B, Zhang X. et al. Antioxidant and anticoagulant activities of polysaccharides extracted from different parts of Arctium lappa L. Science and Technology of Food Industry, 2020,41(6):305-310.
[13] Chen W W, Li Y F, Yang S, et al. Synthesis and antioxidant properties of chitosan and carboxymethyl chitosan-stabilized selenium nanoparticles. Carbohydrate Polymers, 2015,132:574-581.
pmid: 26256384
[14] Chen W W, Lin Y, Jiang Q X, et al. Synthesis of varisized chitosan-selenium nanocomposites through heating treatment and evaluation of their antioxidant properties. International Journal of Biological Macromolecules, 2018,114:751-758.
pmid: 29588203
[15] Fesharaki P J, Nazari P, Shakibai M, et al. Biosynthesis of selenium nanoparticles using Klebsiella pneumoniae and their recovery by a simple sterilization process. Brazilian journal of microbiology, 2010,41(2):461-466.
pmid: 24031517
[16] 赵胜男. 不同尺寸纳米硒的制备及其生物活性研究. 黑龙江: 佳木斯大学, 2019.
Zhao S N. Preparation and bioactivity of different sizes nano-selenium. Heilongjiang: Jiamusi University, 2019.
[17] 王翼雪. 富硒乳酸菌的筛选及富硒发酵工艺的研究. 哈尔滨: 哈尔滨商业大学, 2017.
Wang Y X. Screening of se-enriched Lactobacillus and optimization of fermentation conditions. Harbin: Harbin University of Commerce, 2017.
[18] 许定. 睾丸酮丛毛单胞菌S44中单质硒纳米颗粒的形成与稳定机理和房间芽胞杆菌属一新种鉴定. 武汉: 华中农业大学, 2018.
Xu D. Formation and stabilization of selenium nanoparticles in Comamonas testosteroni S44 and identification of a novel species of Domibacillus. WuHan: Huazhong Agricultural University, 2018.
[19] Li C C, Zhou L, Yang H, et al. Self-assembled exopolysaccharide nanoparticles for bioremediation and green synthesis of noble metal nanoparticles. ACS Applied Materials & Interfaces, 2017,9(27):22808-22818.
pmid: 28613815
[20] Wang X F, Zhang W Q, Shen Y H, et al. Facile, one-step controlled synthesis of Se nanocrystals in the presence of L-tyrosine. Materials Science & Engineering B, 2011,176(14):1093-1098.
[21] 高慧娟, 冯九海, 韩玉琦, 等. 富硒荷叶离褶伞菌丝体中硒多糖提取工艺的优化及红外光谱分析. 食品与发酵工业, 2018,44(3):151-158.
Gao H J, Feng J H, Han Y Q, et al. Optimization of extraction technology and IR spectroscopy of Se-polyasccharide from Selenium-enriched Lyophyllum decastes mycelium. Food and Fermentation Industries, 2018,44(3):151-158.
[22] Liu W, Li X L, Wong Y S, et al. Selenium nanoparticles as a carrier of 5-fluorouracil to achieve anticancer synergism. ACS Nano, 2012,6(8):6578-6591.
doi: 10.1021/nn202452c pmid: 22823110
[23] Zhang C Y, Zhai X N, Zhao G H, et al. Synthesis, characterization, and controlled release of selenium nanoparticles stabilized by chitosan of different molecular weights. Carbohydrate Polymers, 2015,134:158-166.
doi: 10.1016/j.carbpol.2015.07.065 pmid: 26428112
[24] Wang H, Wei W, Zhang S Y, et al. Melatonin‐selenium nanoparticles inhibit oxidative stress and protect against hepatic injury induced by Bacillus Calmette-Guérin/lipopolysaccharide in mice. Journal of Pineal Research, 2005,39(2):156-163.
pmid: 16098093
[25] Esumi K, Akiyama S, Yoshimura T. Multilayer formation using oppositely charged gold and silver dendrimer nanocomposites. Langmuir, 2003,19(18):7679-7681.
[26] Kong H L, Yang J X, Zhang Y F. et al. Synthesis and antioxidant properties of gum arabic-stabilized selenium nanoparticles. International Journal of Biological Macromolecules, 2014,65:155-162.
pmid: 24418338
[27] Wang Y Y, Qiu W Y, Sun L, et al. Preparation, characterization, and antioxidant capacities of selenium nanoparticles stabilized using polysaccharide-protein complexes from Corbicula fluminea. Food Bioscience, 2018,26:177-184.
[28] Cai W F, Hu T, Bakry A M, et al. Effect of ultrasound on size, morphology, stability and antioxidant activity of selenium nanoparticles dispersed by a hyperbranched polysaccharide from Lignosus rhinocerotis. Ultrasonics Sonochemistry. 2018,42:823-831.
[29] Ak T, Gülçin I. Antioxidant and radical scavenging properties of curcumin. Chemico-Biological Interactions, 2008,174(1):27-37.
doi: 10.1016/j.cbi.2008.05.003 pmid: 18547552
[1] 陈中伟,郑璞,陈鹏程,吴丹. 耐热植酸酶突变体的筛选及性质研究 *[J]. 中国生物工程杂志, 2021, 41(2/3): 30-37.
[2] 魏子翔,张柳群,雷磊,韩正刚,杨江科. 疏棉状嗜热丝孢菌(Thermomyces lanuginosus)脂肪酶的理性设计提高其活性和温度稳定性[J]. 中国生物工程杂志, 2021, 41(2/3): 63-69.
[3] 明玥,赵自通,王鸿磊,梁志宏. 基于序列和结构分析的酶热稳定性改造策略*[J]. 中国生物工程杂志, 2021, 41(10): 100-108.
[4] 赵晓艳,陈允妲,章雅倩,吴晓玉,王飞,陈金印. Myxococcus sp.V11海藻糖合酶TreS II分子改造 *[J]. 中国生物工程杂志, 2020, 40(3): 79-87.
[5] 王彦伟,李鹏昊,梁严予,关洋,逄文强,田克恭. 猪圆环病毒2型病毒样颗粒的高效组装技术研究*[J]. 中国生物工程杂志, 2020, 40(11): 35-42.
[6] 吝建华,韩君,徐寒梅. PD-1/PD-L1免疫检查点抗体药物制剂稳定性开发[J]. 中国生物工程杂志, 2020, 40(10): 35-42.
[7] 陈子晗,周海胜,尹新坚,吴坚平,杨立荣. Amphibacillus xylanus谷氨酸脱氢酶基因工程菌培养条件优化 *[J]. 中国生物工程杂志, 2019, 39(10): 58-66.
[8] 张潘潘,许延吉,王之可,刘晓,李素霞. 重组猪胰蛋白酶及其R122位点突变体在毕赤酵母中的高效表达及其性质研究[J]. 中国生物工程杂志, 2018, 38(5): 56-65.
[9] 高红桃, 郭晓威, 孙丹, 解长睿, 王法微, 李海燕. 亚麻芥种子油体的提取及稳定性研究[J]. 中国生物工程杂志, 2017, 37(9): 98-104.
[10] 刘延娟, 李旭娟, 袁航, 刘娴, 高艳秀, 龚明, 邹竹荣. 融合酰基载体蛋白可增强大肠杆菌重组蛋白的可溶性和热稳定性[J]. 中国生物工程杂志, 2017, 37(7): 115-123.
[11] 程可利, 刘晓, 李素霞. 对SDS稳定的V8(V125T)蛋白酶突变体的高效表达及性质研究[J]. 中国生物工程杂志, 2017, 37(4): 56-67.
[12] 郭超, 王志彦, 甘一如, 李丹, 邓勇, 于浩然, 黄鹤. 技术与方法理性设计改造牛肠激酶的热稳定性[J]. 中国生物工程杂志, 2016, 36(8): 46-54.
[13] 虞晓丹, 吴秀秀, 姚冬生, 刘大岭, 谢春芳. 基于分子结构评价的Bacillus subtilis β-1,4-内切木聚糖酶胰蛋白酶抗性的理性设计[J]. 中国生物工程杂志, 2016, 36(8): 80-88.
[14] 郭玮婷, 张慧, 查东风, 黄汉峰, 黄静, 高红亮, 常忠义, 金明飞, 鲁伟. 产耐高温谷氨酰胺转胺酶菌株的快速筛选方法[J]. 中国生物工程杂志, 2015, 35(8): 83-89.
[15] 焦昀, 孔英俊, 高建萍, 康跻耀, 孙坤, 査圣华, 张贵锋, 王明林. 羟基化修饰对大鼠胶原热稳定性的影响研究[J]. 中国生物工程杂志, 2015, 35(11): 7-12.