Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2020, Vol. 40 Issue (6): 40-52    DOI: 10.13523/j.cb.2001036
技术与方法     
一种用于药物蛋白亲和纯化和跨膜转运的双功能标签的开发 *
郭利成1,曹雪玮1,傅龙云2,王富军2,3,赵健1,**()
1 华东理工大学生物反应器工程重点实验室 上海 200237
2 浙江孚诺医药股份有限公司 东阳 322100
3 上海中医药大学中药研究所 上海 201203
Development of A Bifunctional Tag Used for Affinity Purification and Transmembrane Transport of Drug Proteins
GUO Li-cheng1,CAO Xue-wei1,FU Long-yun2,WANG Fu-jun2,3,ZHAO Jian1,**()
1 State Key Laboratory of Bioreactor Engineering,East China University of Science and Technology,Shanghai 200237,China
2 Zhejiang FONOW Medicine Co. Ltd,Dongyang 322100,China
3 Institute of Chinese Materia Medica, Shanghai University of Traditional Chinese Medicine,Shanghai 201203,China
 全文: PDF(3349 KB)   HTML
摘要:

目的 开发一种既能用于亲和纯化目标蛋白,又可介导不能自主进入细胞的药物蛋白跨膜转运到细胞内发挥活性的双功能标签。方法 从已有文献资料中挑选四种富含碱性氨基酸的钙调蛋白结合肽(calmodulin binding peptide,CBP),将其与绿色荧光蛋白(EGFP)融合表达,然后采用与钙调蛋白(calmodulin,CaM)亲和结合过程来筛选与CaM具有最高亲和力的CBP;随后采用荧光显微镜检测、激光共聚焦显微镜检测以及流式细胞术等技术来分析测定和比较候选CBP序列将EGFP重组蛋白自主转运进入细胞的能力。最后将筛选到的新型CBP双功能标签与凋亡蛋白融合表达,考察其与CaM亲和结合后纯化重组凋亡蛋白的能力,以MTT法分析此重组蛋白进入肿瘤细胞抑制生长的能力。结果 通过CaM-CBP亲和层析筛选出与CaM具高有亲和力的三种CBP序列;从重组蛋白胞内荧光检测结果得知,带有野生型骨骼肌肌球蛋白轻链激酶CBP序列(MLCK)的重组EGFP蛋白具有最佳跨膜转运效率,且显著高于来源于艾滋病毒的经典穿膜肽TAT的穿膜效率。以此MLCK新型双功能标签成功地通过CaM-CBP亲和结合纯化得到重组凋亡蛋白,并可将重组凋亡蛋白转运进入细胞内发挥抗肿瘤作用。重组凋亡蛋白对MGC-803、H460、HeLa三种肿瘤细胞生长的24h半抑制浓度(IC50)分别为:1.18μmol/L、1.23μmol/L、1.23μmol/L。结论 筛选得到一种新型双功能标签MLCK,其可通过与CaM高亲和作用进行亲和纯化;同时标签本身还具有和典型穿膜肽一样的高效跨膜转运功能,可将药物蛋白自主转运进入细胞,发挥药物的生物活性。因此,新型双功能标签既可用于药物蛋白的亲和纯化,又兼具体内跨膜运输作用,可广泛用于各种新型药物的开发。

关键词: 钙调蛋白钙调蛋白结合肽双功能标签凋亡蛋白    
Abstract:

Objective: To develop a bifunctional tag which can be used for affinity purification of target proteins, and can carry some drug proteins that cannot enter the cell autonomously across cell membrane to exert activity.Methods: Four types of calmodulin binding peptide (CBP) rich in basic amino acids are selected from the literature as candidate tags for fusion expression with green fluorescent protein (EGFP). The CBP with the highest affinity to CaM is screened by CaM affinity binding process. Subsequently, the capacity of the candidate CBP sequences to autonomously transport EGFP recombinant proteins into cell is analyzed and determined by fluorescence microscopy, laser confocal microscopy and flow cytometry. Finally, the novel CBP bifunctional tag is screened then fused and expressed with Apoptin, and its ability to purify recombinant Apoptin is examined after binding with CaM. The ability of this recombinant protein to enter tumor inhibiting cell growth is analyzed by MTT method.Results: Three novel CBP sequences with high affinity to CaM are screened out by CaM-CBP affinity chromatography. The intracellular fluorescence detection results of the recombinant protein showed that the CBP sequences derived from wild-type skeletal muscle myosin light chain kinase (named MLCK) has the best transmembrane efficiency to carry EGFP into cells, and its transportation capacity is much higher than the classic cell-penetrating peptides TAT derived from HIV. The recombinant Apoptin is purified by CaM-CBP affinity chromatography with the affinity tag MLCK and can be transported into cells to exert an anti-tumor activity. Furthermore,MTT assay results show that the 24-hour 50% inhibitory concentrations (IC50) of the recombinant Apoptin on three tumor cells MGC-803, H460, and HeLa are 1.18μmol/L, 1.23μmol/L, and 1.23μmol/L, respectively, which shows that the Apoptin retains partial anti-tumor activity.Conclusion: A novel calmodulin-binding peptide, MLCK, is screened out which can be used in affinity purification due to its high affinity with CaM. Simultaneously, it has high-efficiency transmembrane function which is similar to typical cell-penetrating peptides, and can carry drug proteins into cells autonomously to exert the biological activity of drugs. Therefore, the novel bifunctional tag can be used for both affinity purification of drug proteins and cell membrane transportation, thus it can be widely used in the development of various new drugs.

Key words: Calmodulin    Calmodulin binding peptide    Bifunctional tag    Apoptin
收稿日期: 2020-01-13 出版日期: 2020-06-23
ZTFLH:  Q819  
基金资助: * 国家自然科学基金(81571795)
通讯作者: 赵健     E-mail: zhaojian@ecust.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
郭利成
曹雪玮
傅龙云
王富军
赵健

引用本文:

郭利成,曹雪玮,傅龙云,王富军,赵健. 一种用于药物蛋白亲和纯化和跨膜转运的双功能标签的开发 *[J]. 中国生物工程杂志, 2020, 40(6): 40-52.

GUO Li-cheng,CAO Xue-wei,FU Long-yun,WANG Fu-jun,ZHAO Jian. Development of A Bifunctional Tag Used for Affinity Purification and Transmembrane Transport of Drug Proteins. China Biotechnology, 2020, 40(6): 40-52.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2001036        https://manu60.magtech.com.cn/biotech/CN/Y2020/V40/I6/40

图1  质粒示意图
名称 氨基酸序列
(阴影标记部分为碱性氨基酸)
标签等电点
(pI)
CaMkI AKSKWKQAFNATAVVRHMR 12.55
MLCK RWKKNFIAVSAANRFKKIS 12.56
smMLCK RRKWQKTGHAVRAIGRLSS 12.98
L-Selectin AFIIWLARRLKKGKK 12.56
表1  四种候选CBP的氨基酸序列
图2  CaM-CBP亲和层析的示意图和实验结果
图3  SDS-PAGE分析商业化CaM介质亲和层析
图4  CBP的穿膜性质分析
图5  各种抑制剂对EGFP-MLCK穿膜效率的影响
图6  MLCK突变体的穿膜效率分析
图7  SDS-PAGE分析Apoptin融合蛋白的表达纯化
图8  Apoptin-MLCK对肿瘤细胞和正常细胞促生长效应
[1] Terpe K . Overview of tag protein fusions: from molecular and biochemical fundamentals to commercial systems. Applied Microbiology & Biotechnology, 2003,60(5):523-533.
[2] Lichty J J, Malecki J L, Agnew H D , et al. Comparison of affinity tags for protein purification. Protein Expr Purif, 2005,41(1):98-105.
[3] Vorackova I, Suchanova S, Ulbrich P , et al. Purification of proteins containing zinc finger domains using immobilized metal ion affinity chromatography. Protein Expr Purif, 2011,79(1):88-95.
pmid: 21600288
[4] Fritze C E, Anderson T R . Epitope tagging: general method for tracking recombinant proteins. Methods in Enzymology, 2000,327:3-16.
doi: 10.1016/s0076-6879(00)27263-7 pmid: 11044970
[5] Young C L, Britton Z T, Robinson A S . Recombinant protein expression and purification: a comprehensive review of affinity tags and microbial applications. Biotechnology Journal, 2012,7(5):620-634.
[6] Cho H J, Lee Y, Chang R S , et al. Maltose binding protein facilitates high-level expression and functional purification of the chemokines RANTES and SDF-1α from Escherichia coli. Protein Expr Purif, 2008,60(1):37-45.
[7] Krishnan S, Collazo E, Ortiz-Tello P A , et al. Purification and assay protocols for obtaining highly active Jumonji C demethylases. Anal Biochem, 2012,420(1):48-53.
[8] 占艺, 张金钟, 王丽芬 . 重组蛋白质亲和标签的选择与串联亲和纯化的应用进展. 现代生物医学进展, 2009,9(9):1757-1760.
Zhan Y, Zhang J Z, Wang L F . Choosing of affinity tags for recombinant proteins and application progress of tandem affinity purification. Progress in Modern Biomedicine, 2009,9(9):1157-1160.
[9] Zakalskiy A E, Zakalska O M, Rzhepetskyy Y A , et al. Overexpression of (His) 6 -tagged human arginase I in Saccharomyces cerevisiae and enzyme purification using metal affinity chromatography. Protein Expr Purif, 2012,81(1):63-68.
[10] Fukushima M, Iiyama K, Yamashita J , et al. Production of small antibacterial peptides using silkworm-baculovirus protein expression system. Preparative Biochemistry and Biotechnology, 2013,43(6):565-576.
doi: 10.1080/10826068.2012.762717
[11] Westra D F, Welling G W, Koedijk D G A M , et al. Immobilised metal-ion affinity chromatography purification of histidine-tagged recombinant proteins: a wash step with a low concentration of EDTA. Journal of Chromatography B, 2001,760(1):129-136.
[12] 武文轩, 孙冬琳, 孙海明 , 等. 亲和标签在重组蛋白纯化领域的研究进展. 国际遗传学杂志, 2016,39(3):138-143.
Wu W X, Sun D L, Sun H M , et al. Research progress of the affinity tag in the field of recombinnat protein purification. International Journal of Genetics, 2016,39(3):138-141.
[13] Crosby KC, Postma M, Hink M A , et al. Quantitative analysis of self-association and mobility of annexin A4 at the plasma membrane. Biophys, 2013,104:1875-188.
[14] Ngwa V M, Axford D S, Healey A N , et al. A versatile cell-penetrating peptide-adaptor system for efficient delivery of molecular cargos to subcellular destinations. PLoS One, 2017,12(5):e0178648.
pmid: 28552994
[15] Mukherjee S, Mra M, Hoey R J , et al. A new versatile immobilization tag based on the ultra high affinity and reversibility of the calmodulin-calmodulin binding peptide interaction. J Mol Biol, 2015,427(16):2707-2725.
pmid: 26159704
[16] Li T, Yi L, Hai L , et al. The interactome and spatial redistribution feature of Ca2+ receptor protein calmodulin reveals a novel role in invadopodia-mediated invasion . Cell Death & Disease, 2018,9(3):292.
[17] Chen K, Ruan J, Kurgan L A . Prediction of three dimensional structure of calmodulin. Protein J, 2006,25(1):57-70.
pmid: 16721661
[18] Feng R, Liu Y, Sun X , et al. Molecular cloning and expression of the calmodulin gene from guinea pig hearts. Experimental and Therapeutic Medicine, 2015,9(6):2311-2318.
[19] Juvvadi P R, Fortwendel J R, Rogg L E , et al. Localization and activity of the calcineurin catalytic and regulatory subunit complex at the septum is essential for hyphal elongation and proper septation in Aspergillus fumigatus. Mol Microbiol, 2011,82(5):1235-1259.
pmid: 22066998
[20] Sharma R K, Parameswaran S . Calmodulin-binding proteins: a journey of 40 years. Cell Calcium, 2018,75:89-100.
pmid: 30205293
[21] Zou B, Wan D, Li R , et al. Calmodulin-binding protein CBP60g functions as a negative regulator in Arabidopsis anthocyanin accumulation. PLoS One, 2017,12(3):e0173129.
doi: 10.1371/journal.pone.0173129 pmid: 28253311
[22] Abbasi W A, Asif A, Andleeb S , et al. CaMELS: in silico prediction of calmodulin binding proteins and their binding sites. Proteins: Structure, Function, and Genetics, 2017,85(9):1724-1740.
[23] Yap K L, Kim J, Truong K , et al. Calmodulin target database. Journal of Structural and Functional Genomics, 2000,1(1):8-14.
doi: 10.1023/A:1011320027914
[24] Senga Y, Ishida A, Shigeri Y , et al. The phosphatase-resistant isoform of CaMKI, Ca2+/calmodulin-dependent protein kinase idelta (CaMKI delta), remains in its “primed” form without Ca2+ stimulation. Biochemistry, 2015,54(23):3617-3630.
doi: 10.1021/bi5012139 pmid: 25994484
[25] André Ziegler, Nervi P, Markus Dürrenberger , et al. The cationic cell-penetrating peptide CPP TAT derived from the HIV-1 protein TATIs rapidly transported into living fibroblasts: optical, biophysical, and metabolic evidencet. Biochemistry, 2005,44(1):138-148.
[26] Wanting Y, Yang Z, Boxin X , et al. Highly efficient cellular uptake of a cell-penetrating peptide (CPP) derived from the capsid protein of porcine circovirus type 2. Journal of Biological Chemistry, 2018,1860(8):1589-1599.
[27] Frankel A D, Pabo C O . Cellular uptake of the tat protein from human immunodeficiency virus. Cell, 1988,55(6):1189-1193.
doi: 10.1016/0092-8674(88)90263-2 pmid: 2849510
[28] Guo Z, Peng H, Kang J , et al. Cell-penetrating peptides: possible transduction mechanisms and therapeutic applications. Biomed Reports, 2016,4(5):528-534.
[29] Ruiz-Martinez S, Castro J, Vilanova M , et al. A truncated apoptin protein variant selectively kills cancer cells. Invest New Drugs, 2017,35(3):260-268.
[30] Chen S, Li Y Q, Yin X Z , et al. Recombinant adenoviruses expressing apoptin suppress the growth of MCF7 breast cancer cells and affect cell autophagy. Oncology Reports, 2019,41(5):2818-2832.
doi: 10.3892/or.2019.7077 pmid: 30896879
[31] 李柳美, 曹雪玮, 王晓旦 , 等. 商陆皂苷甲的联用可显著提高tApoptin凋亡蛋白的抗肿瘤活性. 中国生物化学与分子生物学报, 2019,35(10).
Liu L M, Cao X W, Wang X D , et al. The combination of esculentoside can significantly improve the anti-tumor activity of tApoptin. Chinese Journal of Biochemistry and Molecular Biology, 2019,35(10).
[32] Akbari A, Arabsolghar R, Behzad Behbahani A , et al. Human gyrovirus Apoptin as a potential selective anticancer agent: an in vitro study. Pharmaceutical Sciences, 2019,25(1):44-49.
[33] 刘雪梅, 崔剑, 侯伟健 , 等. TAT-Apoptin融合蛋白分泌表达载体的构建及其活性检测. 中国医科大学学报, 2013,42(1):45-48.
Liu X M, Cui J, Hou W J , et al. Construction of prokaryotic secretory expression vector of TAT-Apoptin and expression in E. coli. Journal of China Medical University, 2013,42(1):45-48.
[34] Ishida H, Nguyen L T, Gopal R , et al. Over-expression of antimicrobial, anticancer and transmembrane peptides in Escherichia coli through a calmodulin-peptide fusion system. Journal of The American Chemical Society, 2016,138(35):11318-11326.
pmid: 27502305
[35] 谢洋洋, 王邵娟, 袁权 , 等. 细胞穿膜肽研究应用的新进展. 生物工程学报, 2019,35(7):1162-1173.
pmid: 31328473
Xie Y Y, Wang S J, Yuan Q , et al. Advances in the research and application of cell penetrating peptides. Chinese Journal of Biotechnology, 2019,35(7):1162-1173.
pmid: 31328473
[36] 陈爱春, 彭伟, 汪生鹏 . 亲和标签在重组蛋白表达与纯化中的应用. 中国生物工程杂志, 2012,32(12):93-103.
Cheng A C, Peng W, Wang S P . Progress in the application of affinity tags for the expression and purification of recombinant proteins. China Biotechnology, 2012,32(12):93-103.
[37] 许鑫, 仲雨微, 李其久 , 等. TAT-Apoptin蛋白制备及其诱导BGC-823细胞的凋亡作用. 南开大学学报(自然科学版), 2015(5):33-37.
Xu X, Zhong Y W, Zhang B H , et al. TAT-Apoptin protein preparation and induction of apoptosis of BGC-823 cell. Acta Scientiarum Naturalium Universitatis Nankaiensis, 2015,48(5):33-37.
[38] 翟逸舟, 卢美雅, 赵健 , 等. 白树毒素融合蛋白的筛选及其抗肿瘤作用和凋亡途径研究. 生物技术通报, 2018,34(6):204-212.
Zhai Y Zh, Lu M Y, Zhao J , et al. Screening of a Gelonin fusion protein with high cell-penetrating efficiency and its anti-tumor activity and apoptosis pathway. Biotechnology Bulletin, 2018,34(6):204-212.
[1] 林敏. 玉米生物育种基础研究与关键技术[J]. 中国生物工程杂志, 2021, 41(12): 1-3.
[2] 吴函蓉,王莹,黄英明,李冬雪,李治非,方子寒,范玲. 以基地平台为抓手,促进生物技术创新与转化[J]. 中国生物工程杂志, 2021, 41(12): 141-147.
[3] 尹泽超,王晓芳,龙艳,董振营,万向元. 玉米穗腐病抗性鉴定、遗传分析与分子机制*[J]. 中国生物工程杂志, 2021, 41(12): 103-115.
[4] 冷燕,孙康泰,刘倩倩,蒲阿庆,李翔,万向元,魏珣. 全球基因编辑作物监管趋势研究[J]. 中国生物工程杂志, 2021, 41(12): 24-29.
[5] 何伟,祝蕾,刘欣泽,安学丽,万向元. 玉米遗传转化与商业化转基因玉米开发*[J]. 中国生物工程杂志, 2021, 41(12): 13-23.
[6] 杨梦冰,江易林,祝蕾,安学丽,万向元. CRISPR/Cas植物基因组编辑技术及其在玉米中的应用*[J]. 中国生物工程杂志, 2021, 41(12): 4-12.
[7] 殷芳冰,王成,龙艳,董振营,万向元. 玉米雌穗性状遗传分析与形成机制*[J]. 中国生物工程杂志, 2021, 41(12): 30-46.
[8] 秦文萱,刘鑫,龙艳,董振营,万向元. 玉米叶夹角形成的遗传基础与分子机制解析*[J]. 中国生物工程杂志, 2021, 41(12): 74-87.
[9] 王锐璞,董振营,高悦欣,龙艳,万向元. 玉米籽粒淀粉含量遗传基础与调控机制*[J]. 中国生物工程杂志, 2021, 41(12): 47-60.
[10] 马雅杰,高悦欣,李依萍,龙艳,董振营,万向元. 玉米株高和穗位高的遗传基础与分子机制*[J]. 中国生物工程杂志, 2021, 41(12): 61-73.
[11] 王彦博,魏佳,龙艳,董振营,万向元. 玉米雄穗性状遗传结构与形成分子机制*[J]. 中国生物工程杂志, 2021, 41(12): 88-102.
[12] 毛开云,李荣,李丹丹,赵若春,范月蕾,江洪波. 全球双特异性抗体药物研发格局分析*[J]. 中国生物工程杂志, 2021, 41(11): 110-118.
[13] 吴函蓉,王莹,杨力,葛瑶,范玲. 我国生物技术基地平台现状与发展建议[J]. 中国生物工程杂志, 2021, 41(11): 119-123.
[14] 刘天义,冯卉,SALSABEELYousuf,解领丽,苗向阳. lncRNA在动物脂肪沉积中的研究进展*[J]. 中国生物工程杂志, 2021, 41(11): 82-88.
[15] 薛志勇,代红生,张显元,孙艳颖,黄志伟. 表达透明颤菌血红蛋白基因对酿酒酵母生长及细胞内氧化状态的影响*[J]. 中国生物工程杂志, 2021, 41(11): 32-39.