Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2019, Vol. 39 Issue (4): 106-113    DOI: 10.13523/j.cb.20190414
综述     
细菌中D-氨基酸生物合成及调控作用研究进展 *
薛二淑1,2,3,吴昊1,2,3,宋倩倩1,2,3,田开仁1,2,3,乔建军1,2,3,财音青格乐1,2,3**()
1 天津大学化工学院 天津 300072
2 系统生物工程教育部重点实验室 天津 300072
3 天津化学化工协同创新中心合成生物学平台 天津 300072
Research Progress in the Biosynthesis and Regulation of D-amino Acids in Bacterial
Er-shu XUE1,2,3,Qian-qian SONG1,2,3,Kai-ren TIAN1,2,3,Jian-jun QIAO1,2,3,Cai-yin QINGGELE1,2,3**()
1 School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
2 Key Laboratory of Systems Bioengineering of Ministry of Education, Tianjin University, Tianjin 300072, China
3 Syn Bio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering, Tianjin University, Tianjin 300072, China
 全文: PDF(1013 KB)   HTML
摘要:

细菌中普遍存在L/D型氨基酸,与L-氨基酸(L-AAs)不同,D-氨基酸(D-AAs)不参与蛋白质合成,而与细胞壁肽聚糖的合成有关,直接影响细菌细胞壁的形状、数量和强度。D-AAs在细菌表征、药物抑菌性、靶标确定等方面具有重要的作用。目前,外源添加D-AAs参与肽聚糖合成的机制已有一些研究进展,其荧光衍生物已应用于细菌可视化,特异性探测细胞壁形成/重塑、细菌生长和细胞形态。但D-AAs如何影响细菌生长及其抗逆性的机制尚未研究清楚。对D-AAs的研究现状进行综述,重点介绍D-AAs在细菌中的生物合成机制和参与细胞壁合成的机制、非典型D-AAs对细菌的调控以及在细菌可视化中的应用,并对D-AAs未来研究方向进行了展望。

关键词: 肽聚糖D-氨基酸氨基酸异构酶氨基酸转氨酶    
Abstract:

L/D amino acids are common components in bacteria. Unlike L-amino acids (L-AAs), D-amino acids (D-AAs) are not involved in protein synthesis, but participate in the biosynthesis of cell wall peptidoglycan, directly affecting the shape, quantity and strength of bacterial cell wall. D-AAs play an important role in bacterial characterization, drug bacteriostasis, and target determination. At present, the mechanism that exogenous addition of D-AAs is involved in peptidoglycan synthesis has been studied and fluorescent derivatives applied to bacterial visualization, specifically detecting cell wall formation/remodeling, bacterial growth and cell morphology. However, the mechanism of how D-AAs affect bacterial growth and its resistance to stress has not been elucidated. The current studies of D-AAs was summarized. The biosynthesis pathway of D-AAs in bacteria, mechanism of cell wall synthesis and the effects of non-canonical D-amino acids on bacterial regulation, and its application in bacterial visualization were highlighted. In the end, the future research direction of D-AAs are prospected.

Key words: Peptidoglycan    D-amino acid    Amino acid isomerase    Amino acid aminotransferase
收稿日期: 2018-11-08 出版日期: 2019-05-08
ZTFLH:  Q517  
基金资助: * 国家自然科学基金资助项目(31570089)
通讯作者: 财音青格乐     E-mail: qinggele@tju.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
薛二淑
吴昊
宋倩倩
田开仁
乔建军
财音青格乐

引用本文:

薛二淑,吴昊,宋倩倩,田开仁,乔建军,财音青格乐. 细菌中D-氨基酸生物合成及调控作用研究进展 *[J]. 中国生物工程杂志, 2019, 39(4): 106-113.

Er-shu XUE,Qian-qian SONG,Kai-ren TIAN,Jian-jun QIAO,Cai-yin QINGGELE. Research Progress in the Biosynthesis and Regulation of D-amino Acids in Bacterial. China Biotechnology, 2019, 39(4): 106-113.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20190414        https://manu60.magtech.com.cn/biotech/CN/Y2019/V39/I4/106

图1  D-AAs合成PG侧链[5, 19]
图2  D-AAs的合成
图3  PG的生物合成机制[4-5, 15]
图4  NCDAAs参与PG合成的机制[4-5, 15]
[1] Radkov A D, Moe L A . Bacterial synthesis of D-amino acids. Appl Microbiol Biotechnol, 2014,98(12):5363-5374.
doi: 10.1007/s00253-014-5726-3 pmid: 24752840
[2] Gao X, Ma Q, Zhu H . Distribution, industrial applications, and enzymatic synthesis of D-amino acids. Appl Microbiol Biotechnol, 2015,99(8):3341-3349.
doi: 10.1007/s00253-015-6507-3 pmid: 25758960
[3] Lam H, Oh D C, Cava F , et al. D-amino acids govern stationary phase cell wall remodeling in bacteria. Science, 2009,325(5947):1552-1555.
doi: 10.1126/science.1178123 pmid: 19762646
[4] Cava F , Lam H, de Pedro M A , et al. Emerging knowledge of regulatory roles of D-amino acids in bacteria. Cellular & Molecular Life Sciences, 2011,68(5):817-831.
doi: 10.1007/s00018-010-0571-8 pmid: 21161322
[5] Cava F, de Pedro M A, Lam H , et al. Distinct pathways for modification of the bacterial cell wall by non-canonical D-amino acids. EMBO Journal, 2011,30(16):3442-3453.
doi: 10.1038/emboj.2011.246
[6] Patel K, Singh G K, Patel D K . A Review on Pharmacological and Analytical Aspects of Naringenin. Chinese Journal of Integrative Medicine, 2018,24(7):551-560.
doi: 10.1007/s11655-014-1960-x pmid: 25501296
[7] Monselise E B, Levkovitz A, Kost D . Ultraviolet radiation induces stress in etiolated Landoltia punctata, as evidenced by the presence of alanine, a universal stress signal: a (15) N NMR study. Plant Biology, 2015,17(1):101-107.
doi: 10.1111/plb.2014.17.issue-s1
[8] Hirano T, Tanidokoro K, Shimizu Y , et al. Moss Chloroplasts are surrounded by a peptidoglycan wall containing D-amino acids. Plant Cell, 2016,28(7):1521-1532.
doi: 10.1105/tpc.16.00104 pmid: 27325639
[9] Hener C, Hummel S, Suarez J , et al. D-amino acids are exuded by Arabidopsis thaliana roots to the rhizosphere. International Journal of Molecular Sciences, 2018,19(4):1109.
doi: 10.3390/ijms19041109
[10] Takaaki K, Tohru K, Takuro N , et al. Enantioselective utilization of D-amino acids by deep-sea microorganisms. Frontiers in Microbiology, 2016,7:511.
doi: 10.3389/fmicb.2016.00511 pmid: 4836201
[11] Aliashkevich A, Alvarez L, Cava F . New insights into the mechanisms and biological roles of D-amino acids in complex eco-systems. Front Microbiol, 2018,9:683.
doi: 10.3389/fmicb.2018.00683
[12] Kolodkin-Gal I, Romero D, Cao S , et al. D-amino acids trigger biofilm disassembly. Science, 2010,328(5978):627-629.
doi: 10.1126/science.1188628
[13] Jones R M , Jr., Popham D L, Schmidt A L , et al. Vibrio fischeri DarR directs responses to d-aspartate and represents a group of similar LysR-type transcriptional regulators. Journal of Bacteriology, 2018,200(15):e00773.
doi: 10.1016/j.vascn.2018.02.002
[14] Vollmer W , Blanot D, de Pedro M A . Peptidoglycan structure and architecture. FEMS Microbiology Reviews, 2008,32(2):149-167.
doi: 10.1111/j.1574-6976.2007.00094.x
[15] Fura J M, Kearns D, Pires M M . D-amino acid probes for penicillin binding protein-based bacterial surface labeling. Journal of Biological Chemistry, 2015,290(51):30540-30550.
doi: 10.1074/jbc.M115.683342 pmid: 26499795
[16] Veiga P, Piquet S, Maisons A , et al. Identification of an essential gene responsible for D-Asp incorporation in the Lactococcus lactis peptidoglycan crossbridge. Molecular Microbiology, 2006,62(6):1713-1724.
doi: 10.1111/j.1365-2958.2006.05474.x pmid: 17083466
[17] Navarre W W, Schneewind O . Surface proteins of gram-positive bacteria and mechanisms of their targeting to the cell wall envelope. Microbiology and Molecular Biology Reviews, 1999,63(1):174-229.
doi: 10.0000/PMID10066836 pmid: 98962
[18] Peltier J, Courtin P, El M I , et al. Clostridium difficile has an original peptidoglycan structure with a high level of N-acetylglucosamine deacetylation and mainly 3-3 cross-links. Journal of Biological Chemistry, 2011,286(33):29053-29062.
doi: 10.1074/jbc.M111.259150
[19] Lupoli T J, Tsukamoto H, Doud E H , et al. Transpeptidase-mediated incorporation of D-amino acids into bacterial peptidoglycan. Journal of the American Chemical Society, 2011,133(28):10748-10751.
doi: 10.1021/ja2040656
[20] Yoshimura T, Esaki N . Amino acid racemases: Functions and mechanisms. Journal of Bioscience & Bioengineering, 2003,96(2):103-109.
doi: 10.1016/S1389-1723(03)90111-3 pmid: 16233494
[21] Azam M A, Jayaram U . Inhibitors of alanine racemase enzyme: a review. Journal of Enzyme Inhibition & Medicinal Chemistry, 2016,31(4):517-526.
doi: 10.3109/14756366.2015.1050010 pmid: 26024289
[22] Arias C A, Weisner J, Blackburn J M , et al. Serine and alanine racemase activities of VanT: a protein necessary for vancomycin resistance in Enterococcus gallinarum BM4174. Microbiology, 2000,146(7):1727-1734.
doi: 10.1016/j.biombioe.2008.01.017 pmid: 10878136
[23] Kuan Y C, Kao C H, Chen C H , et al. Biochemical characterization of a novel lysine racemase from Proteus mirabilis BCRC10725. Process Biochemistry, 2011,46(10):1914-1920.
doi: 10.1016/j.procbio.2011.06.019
[24] Radkov A D, Moe L A . Amino acid racemization in Pseudomonas putida KT2440. Journal of Bacteriology, 2013,195(22):5016-5024.
doi: 10.1128/JB.00761-13 pmid: 23995642
[25] Stadtman T C, Elliott P . Studies on the enzymic reduction of amino acids. Journal of Biological Chemistry, 1957,231(2):983-997.
doi: 10.1186/1471-2164-15-874
[26] Fisher S L . Glutamate racemase as a target for drug discovery. Microbial Biotechnology, 2010,1(5):345-360.
doi: 10.1111/j.1751-7915.2008.00031.x pmid: 21261855
[27] Mortuza R, Aung H L, Taiaroa G , et al. Overexpression of a newly identified d-amino acid transaminase in Mycobacterium smegmatis complements glutamate racemase deletion. Molecular Microbiology, 2018,107(2):198-213.
doi: 10.1111/mmi.13877 pmid: 29134701
[28] Awasthy D, Bharath S, Subbulakshmi V , et al. Alanine racemase mutants of Mycobacterium tuberculosis require D-alanine for growth and are defective for survival in macrophages and mice. Microbiology, 2012,158(2):319-327.
doi: 10.1099/mic.0.054064-0 pmid: 22075031
[29] Pal M, Bearne S L . Inhibition of glutamate racemase by substrate-product analogues. Bioorganic & Medicinal Chemistry Letters, 2014,24(5):1432-1436.
doi: 10.1016/j.bmcl.2013.12.114 pmid: 24507924
[30] Oh S Y, Richter S G, Missiakas D M , et al. Glutamate racemase mutants of Bacillus anthracis. Journal of Bacteriology, 2015,197(11):1854-1861.
doi: 10.1128/JB.00070-15 pmid: 4420906
[31] Hernandez S B, Cava F . Environmental roles of microbial amino acid racemases. Environ Microbiol, 2016,18(6):1673-1685.
doi: 10.1111/1462-2920.13072 pmid: 26419727
[32] Espaillat A, Carrasco-Lopez C, Bernardo-Garcia N , et al. Structural basis for the broad specificity of a new family of amino-acid racemases. Acta Crystallographica Section D Biological Crystallography, 2014,70(1):79-90.
doi: 10.1107/S1399004713024838 pmid: 24419381
[33] Kawakami R, Ohmori T, Sakuraba H , et al. Identification of a novel amino acid racemase from a hyperthermophilic archaeon Pyrococcus horikoshii OT-3 induced by d -amino acids. Amino Acids, 2015,47(8):1579-1587.
doi: 10.1007/s00726-015-2001-6 pmid: 25963389
[34] Kawakami R, Sakuraba H, Ohmori T , et al. First characterization of an archaeal amino acid racemase with broad substrate specificity from the hyperthermophile Pyrococcus horikoshii OT-3. Journal of Bioscience and Bioengineering, 2017,124(1):23-27.
doi: 10.1016/j.jbiosc.2017.02.004 pmid: 28343923
[35] Mutaguchi Y, Ohmori T, Wakamatsu T , et al. Identification, purification, and characterization of a novel amino acid racemase, isoleucine 2-epimerase, from Lactobacillus species. Journal of Bacteriology, 2013,195(22):5207-5215.
doi: 10.1128/JB.00709-13 pmid: 24039265
[36] Tanizawa K, Asano S, Masu Y , et al. The primary structure of thermostable D-amino acid aminotransferase from a thermophilic acillus species and its correlation with L-amino acid aminotransferases. Journal of Biological Chemistry, 1989,264(5):2450-2454.
doi: 10.1111/j.1432-1033.1989.tb14605.x pmid: 2644261
[37] Fotheringham I G, Bledig S A, Taylor P P . Characterization of the genes encoding D-amino acid transaminase and glutamate racemase, two D-glutamate biosynthetic enzymes of Bacillus sphaericus ATCC 10208. Journal of Bacteriology, 1998,80(16):4319-4323.
pmid: 9696787
[38] McPherson D C, Popham D L . Peptidoglycan synthesis in the absence of class a penicillin-binding proteins in Bacillus subtilis. Journal of Bacteriology, 2003,185(4):1423-1431.
doi: 10.1128/JB.185.4.1423-1431.2003 pmid: 142859
[39] Hammes W, Schleifer K H, Kandler O . Mode of action of glycine on the biosynthesis of peptidoglycan. Journal of Bacteriology, 1973,116(2):1029-1053.
doi: 10.1109/ISVLSI.2004.1339530 pmid: 4200845
[40] Caparrós M, Pisabarro A G , Pedro M A D . Effect of D-amino acids on structure and synthesis of peptidoglycan in Escherichia coli. Journal of Bacteriology, 1992,174(17):5549-5559.
doi: 10.1007/BF02161213 pmid: 206498
[41] Sonenshein A L, Hoch J A, Losick R . The gram-positive world. Science, 1994,263(5146):546-548.
doi: 10.1126/science.263.5146.546
[42] Daniel R A, Williams A M, Errington J . A complex four-gene operon containing essential cell division gene pbpB in Bacillus subtilis. Journal of Bacteriology, 1996,178(8):2343-2350.
doi: 10.1128/jb.178.8.2343-2350.1996 pmid: 8636036
[43] Lebar M D, May J M, Meeske A J , et al. Reconstitution of peptidoglycan cross-linking leads to improved fluorescent probes of cell wall synthesis. Journal of the American Chemical Society, 2014,136(31):10874-10877.
doi: 10.1021/ja505668f pmid: 25036369
[44] Hills G M . Chemical factors in the germination of spore-bearing aerobes; the effect of yeast extract on the germination of Bacillus anthracis and its replacement by adenosine. Biochemical Journal, 1949,45(3):353-362.
doi: 10.1042/bj0450353
[45] Alvarez L , Aliashkevich A, de Pedro M A , et al. Bacterial secretion of D-arginine controls environmental microbial biodiversity. ISME J, 2018,12(2):438-450.
doi: 10.1038/ismej.2017.176 pmid: 29028003
[46] Tong Z, Zhang L, Ling J , et al. An in vitro study on the effect of free amino acids alone or in combination with nisin on biofilms as well as on planktonic bacteria of Streptococcus mutans. PLoS One, 2014,9(6):e99513.
doi: 10.1371/journal.pone.0099513 pmid: 4060998
[47] Yu C, Li X, Zhang N , et al. Inhibition of biofilm formation by D-tyrosine: Effect of bacterial type and D-tyrosine concentration. Water Research, 2016,92(2):173-179.
doi: 10.1016/j.watres.2016.01.037 pmid: 26854605
[48] Kuru E, Lambert C, Rittichier J , et al. Fluorescent D-amino-acids reveal bi-cellular cell wall modifications important for Bdellovibrio bacteriovorus predation. Nature Microbiology, 2017,2(12):1648-1657.
doi: 10.1038/s41564-017-0029-y pmid: 28974693
[49] Hsu Y P, Rittichier J, Kuru E , et al. Full color palette of fluorescent d-amino acids for in situ labeling of bacterial cell walls. Chemical Science, 2017,8(9):6313-6321.
doi: 10.1039/C7SC01800B
[50] Vuorio R, Vaara M . Mutants carrying conditionally lethal mutations in outer membrane genes omsA and firA (ssc) are phenotypically similar, and omsA is allelic to firA. Journal of Bacteriology, 1992,174(22):7090-7097.
doi: 10.1111/j.1365-2672.1992.tb05002.x pmid: 1429432
[51] Daniel R A, Errington J . Control of cell morphogenesis in bacteria. Cell, 2003,113(6):767-776.
doi: 10.1016/S0092-8674(03)00421-5
[52] Doroshenko N, Tseng B S, Howlin R P , et al. Extracellular DNA impedes the transport of vancomycin in Staphylococcus epidermidis biofilms preexposed to subinhibitory concentrations of vancomycin. Antimicrob Agents Chemother, 2014,58(12):7273-7282.
doi: 10.1128/AAC.03132-14 pmid: 4249571
[1] 郭姣洁, 薛永常, 徐书景, 张彩凤, 何广正, 鞠建松. D-氨基酸氧化酶研究进展[J]. 中国生物工程杂志, 2010, 30(11): 106-111.
[2] 苏广伟,孙进,施用晖,乐国伟. 乳酸杆菌肽聚糖对小鼠机体免疫功能的调节作用[J]. 中国生物工程杂志, 2006, 26(08): 98-102.