Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2017, Vol. 37 Issue (12): 49-58    DOI: 10.13523/j.cb.20171208
研究报告     
溶葡球菌酶在乳酸克鲁维酵母中重组表达、诱变、优化及酶学研究*
王曦1,张光德1,陈熙明2,浦铜良1*()
1 兰州大学生命科学学院 兰州 730000
2 中国科学院西北生态环境资源研究院 兰州 730000
Heterologous Expression, Mutation, Optimizing the Expression Condition and Characterization of Lysostaphin in Kluyveromyces lactis
Xi WANG1,Guang-de ZHANG1,Xi-ming CHEN2,Tong-liang PU1*()
1 School of Life Sciences,LanZhou University, Lanzhou 730000, China
2 Northwest Institute of Eco-Environment and Resources, Chinese Academy of Sciences, Lanzhou 730000, China
 全文: PDF(1121 KB)   HTML
摘要:

根据模仿葡萄球菌(Staphylococcus simulans)的溶葡球菌酶基因序列以及乳酸克鲁维酵母密码子偏好性设计引物扩增溶葡球菌酶基因表达片段,构建溶葡球菌酶(lysostaphin,Lys)基因表达载体(pKLAC1-Lys),转化乳酸克鲁维酵母(K. lactis GG799),实现了Lys基因的分泌表达。对重组菌株(K. lactis GG799/pKLAC1- Lys)进行NTG随机化学诱变,优化表达条件,筛选获得高表达菌株,并通过Ni-NTA亲和层析纯化蛋白并研究其酶学性质。结果表明:通过诱变重组溶葡球菌酶乳酸克鲁维菌株,Lys酶比活性提高了约5.2倍(约8 000U/L)。最适接种量为40g/L,诱导过程中每24h添加一次终浓度为20g/L的半乳糖和NH4NO3可提高酶比活性,最适表达pH为7.0~7.5,最适反应pH为7.0~8.0,最适反应温度为37℃。实验表明,低于40℃,pH 3~6之间时,重组溶葡球菌酶较稳定。Sr2+对其酶活性有明显的促进作用,Ba2+、Ca2+、Zn2+、Cu2+、Mn2+、Mg2+对其有明显的抑制作用。

关键词: 乳酸克鲁维酵母溶葡球菌酶重组表达诱变    
Abstract:

According to the sequence of lysostaphin gene from Staphylococcus simulans and codon bias of Kluyveromyces lactis, the PCR primers were designed to amplify the fragment of lysostaphin gene. The fragment was inserted in pKLAC1, and transformed to K. lactis GG799. The K. lactis GG799/pKLAC1- Lys was cultivated to express Lys. A high expression strain (mu4#) were abtained by using powerful mutagen (N-methy1-N-nitro-N-nitrosoguanidine,NTG) on the recombinant and optimized the expression condition .The fermentation broth of mu4# was purified by Ni-NTA agarose and the enzyme characterization was studied. The result showed that the activity of Lys was approximately 5.2 times (8 000U/L) higher in the mutation. The optimal inoculum dose of the mutant (mu4#) was 40g/L; Galactose and NH4NO3 (20g/L) were added in every 24 hours, Lys exhibited optimal expression at pH 7.0~7.5; Furthermore, the Lys enzyme optimal reaction performed at pH 7.0~8.0 and temperature at 37℃. The recombinant Lys was stable below 40℃ and pH between 3.0 and 6.0. Sr2+ stimulated its activity whereas Ba2+、Ca2+、Zn2+、Cu2+、Mn2+、Mg2+ inhibited the activities. This research accomplished Lys recombinant expression, yield improvement by chemical mutagenesis in K. lactis and characterization of lysostaphin. These research results provide profound guiding significance for the large-scale production and application of recombinant lysostaphin.

Key words: Kluyveromyces lactis    Lysostaphin    Recombinant    Mutation
收稿日期: 2017-06-12 出版日期: 2017-12-16
ZTFLH:  Q819  
基金资助: * 国家自然科学基金 (31400437)、甘肃国际合作项目 (1504WKCA097)资助项目
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
王曦
张光德
陈熙明
浦铜良

引用本文:

王曦,张光德,陈熙明,浦铜良. 溶葡球菌酶在乳酸克鲁维酵母中重组表达、诱变、优化及酶学研究*[J]. 中国生物工程杂志, 2017, 37(12): 49-58.

Xi WANG,Guang-de ZHANG,Xi-ming CHEN,Tong-liang PU. Heterologous Expression, Mutation, Optimizing the Expression Condition and Characterization of Lysostaphin in Kluyveromyces lactis. China Biotechnology, 2017, 37(12): 49-58.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.20171208        https://manu60.magtech.com.cn/biotech/CN/Y2017/V37/I12/49

ddH2O10 × Buffer
(含Mg2+)
dNTPs
(2.5mmol/L)
P1P2Taq
37.555110.5
表1  PCR反应体系
图1  PCR 扩增Lys基因琼脂糖凝胶电泳
图2  表达载体pKLAC1-Lys结构
图3  表达载体pKLAC1-Lys酶切鉴定
图4  表达载体pKLAC1-Lys单酶切
图5  K. lactis GG799/pKLAC1- Lys 8#不同诱导时间溶葡球菌酶酶活
图6  mu4#不同诱导时间溶葡球菌酶的酶活
图7  mu4#生长曲线
图8  mu4# 不同起始量对酶活的影响
图9  mu4#不同时间半乳糖添加量对酶活的影响
图10  mu4#不同时间氮源添加对酶活的影响
图11  mu4# 不同pH对酶活的影响
图12  mu4#发酵液SDS-PAGE分析
图13  溶葡球菌酶反应最适pH
图14  溶葡球菌酶pH稳定性
图15  溶葡球菌酶反应最适温度
图16  溶葡球菌酶热稳定性
图17  不同二价金属阳离子对溶葡球菌酶酶活的影响
[1] Schindler C A,Schuhardt V T.Lysostaphin: A new bacteriolytic agent fos the Staphylococcus. Proc Natl Acad Sci USA,1964,51(3):414-421.
doi: 10.1073/pnas.51.3.414
[2] Szweda P, Schielmann M, Kotlowski R, et al.Peptidoglycan hydrolases-potential weapons against Staphylococcus aureus. Appl Microbiol Biotechnol , 2012, 96(5):1157-1174.
doi: 10.1007/s00253-012-4484-3 pmid: 23076591
[3] Szweda P, Gorczyca G, Filipkowski P, et al.Eficient production of Staphylococcus simulans lysostaphin in benchtop bioreactor by recombinant Escherichia coli. Preparative Biochemistry and Biotechnology,2014,44(4) : 370-381.
doi: 10.1080/10826068.2013.829499 pmid: 24320237
[4] Farhangnia L, Ghaznavi-Rad E, Mollaee N, et al.Cloning, expression, and purification of recombinant lysostaphin from Staphylococcus simulans. Jundishapur J Microbiol,2014,7(5): e10009.
[5] Zhao H, Blazanovic K, Choi Y, et al.Gene and protein sequence optimization for high-level production of fully active and a glycosylated lysostaphin in Pichia pastoris. Applied and Environmental Microbiology, 2014, 80(9): 2746-2753.
doi: 10.1128/AEM.03914-13 pmid: 3993296
[6] Schotte P, Dewerte I, Groeve M D, et al.Pichia pastoris MutS strains are prone to misincorporation of O-methyl-l-homoserine at methionine residues when methanol is used as the sole carbon source. Microbial Cell Factories, 2016,15(1):1-9.
doi: 10.1186/s12934-015-0402-6 pmid: 4700567
[7] 杨梅,温真, 林丽玉,等. 毕赤酵母蛋白表达系统研究进展. 生物技术通报, 2011,4(27):46-51.
Yang M,Wen Z, Lin L Y, et al.Advances of expression system of Pichia pastoris protein. Biotechnology Bulletin, 2011,4(27):46-51.
[8] 傅小蒙,孔令聪,裴志花,等. 毕赤酵母表达系统优化策略概述.中国生物工程杂志,2015,35(10):86-90.
doi: 10.13523/j.cb.20151013
Fu X M,Kong L C,Pei Z H, et al.Advance in the research of antimicrobial peptides gene expression in Pichia pastor. China Biotechnology, 2015,35(10):86-90.
doi: 10.13523/j.cb.20151013
[9] 黄雪月,张梁,李赢,等. 黑曲霉阿魏酸酯酶在毕赤酵母中的组成型表达. 微生物学通报, 2017, 44(1):68-78.
doi: 10.13344/j.microbiol.china.160018
Huang X Y, Zhang L, Li Y, et al.Constitutive expression of feruloyl esterase from A Spergillus niger in Pichia pastoris.Microbiol China, 2017, 44(1):68-78.
doi: 10.13344/j.microbiol.china.160018
[10] 肖超, 张梁, 李颜颜,等. 蜡样芽胞杆菌磷脂酶C在乳酸克鲁维酵母中重组表达、纯化及酶学性质分析. 微生物学报, 2017,57(1):87-96.
Xiao C, Zhang L,Li Y Y, et al.Heterologous expression, purification and characterization of phospholipase C from Bacillus cereus in Kluyveromyces lactis. Acta Microbiologica Sinica, 2017,57(1):87-96.
[11] van Ooyen A J, Dekker P, Huang M, et al. Heterologous protein production in the yeast Kluyveromyces lactis. FEMS Yeast Research,2006, 6(3): 381-392.
doi: 10.1111/j.1567-1364.2006.00049.x pmid: 16630278
[12] van den Berg J A, van den Laken K J, van Ooyen A J J, et al. Kluyveromyces as a host for heterologous gene expression: expression and secretion of prochymosin. Biotechnology, 1990, 8(2): 135-139.
doi: 10.1038/nbt0290-135 pmid: 1366557
[13] Swinkels B W, van Ooyen A J, Bonekamp F J. The yeast Kluyveromyces lactis as an efficient host for heterologous gene expression. Antonie van Leeuwenhoek, 1993, 64(2):187-201.
doi: 10.1007/BF00873027 pmid: 8092859
[14] He X Z, Zhao D F, Huang H F, et al. Screening of Propionibacterium shermanii strains with high production antibacterial metabolites by NTG mutation. Journal of Anhui Agricultural Sciences, 2016,44(2):18-20.
[15] 郭玮婷, 张慧, 查东风,等. 产耐高温谷氨酰胺转胺酶菌株的快速筛选方法.中国生物工程杂志, 2015, 35(8):83-89.
doi: 10.13523/j.cb.20150812
Guo W T, Zhang H, Zha D F, et al.A rapid method of screening for thermostable transglutaminase from Streptomyces mobaraensis. China Biotechnology, 2015, 35(8):83-89.
doi: 10.13523/j.cb.20150812
[16] 袁伟, 柯涛, 杜敏华,等.牛凝乳酶原基因的合成及其在乳酸克鲁维酵母中的表达. 生物工程学报, 2010, 26(9):1281-1286.
Yuan W, Ke T, Du M H, et al.Gene synthesis of the bovine prochymosin gene and high-level expression in Kluyvermyces lactis. Chinese Journal of Biotechnology, 2010, 26(9):1281-1286.
[17] 杨信怡,游雪甫,蒋建东.溶葡球菌酶研究进展.中国生化药物杂志, 2005, 26(6):372-374.
Yang X Y,YouX F,Jiang J D.Advances in lysostaphin research. Chinese Journal of Biochemical Pharmaueuties, 2005, 26(6):372-374.
[18] 王永, 刘沐荣, 万海同,等. 聚乙二醇修饰重组溶葡球菌酶的初步研究.中国生物工程杂志, 2013, 33(6):12-17.
Wang Y, Liu M R,Wan H T, et al.Chemical modification of lysostaphin with activated polyethlene glycol. China Biotechnology, 2013, 33(6):12-17.
[19] Hoernig K J, Donovan D M, Pithua P, et al.Evaluation of a lysostaphin-fusion protein as a dry-cow therapy for Staphylococcus aureus mastitis in dairy cattle. American Dairy Science Association, 2016, 99( 6):4638-4646.
doi: 10.3168/jds.2015-10783 pmid: 27040789
[20] 袁怀兵. 重组溶葡萄球菌酶对奶牛子宫内膜炎的疗效研究.当代畜禽养殖业,2013,12(19):6-7.
doi: 10.3969/j.issn.1005-5959.2013.12.004
Yuan H B.The study of recombinant lysostaphin on treatment trial of endometritis in dairy cattle. Modern Animal Husbandry, 2013,12(19):6-7.
doi: 10.3969/j.issn.1005-5959.2013.12.004
[21] 陆锦春,陈华鹏,马怀彦,等. 重组溶葡萄球菌酶在患子宫内膜炎奶牛体内的药代动力学与残留研究.疾病防治,2012,2(19):40-44.
doi: 10.3969/j.issn.1671-4393.2012.02.010
Lu J C,Chen H P,Ma H Y, et al.Pharmacokinetics and residue of recombinant lysostaphin in dairy cows with endometritis. Disease Prevention, 2012,2(19):40-44.
doi: 10.3969/j.issn.1671-4393.2012.02.010
[1] 王惠临,周凯强,朱红雨,王力景,杨仲璠,徐明波,曹荣月. 凝血因子VII及其重组表达新进展[J]. 中国生物工程杂志, 2021, 41(2/3): 129-137.
[2] 陈素芳,夏明印,曾丽艳,安晓琴,田敏芳,彭建. 抗菌肽Cec4a的重组表达和抗菌活性研究*[J]. 中国生物工程杂志, 2021, 41(10): 12-18.
[3] 乐易林,傅毓,倪黎,孙建中. 热稳定性丙酮酸:铁氧还蛋白氧化还原酶异源表达及其在乙酰辅酶A合成中的应用 *[J]. 中国生物工程杂志, 2020, 40(3): 72-78.
[4] 薛瑞,姚林,王瑞,罗正山,徐虹,李莎. 重组贻贝足蛋白的研究进展与应用*[J]. 中国生物工程杂志, 2020, 40(11): 82-89.
[5] 韩挺翰,龚雪梅,郦娟,丁亚芳,卢辰,张坤晓,高嵩,许恒皓. 一种来源于大菱鲆的热敏型尿嘧啶DNA糖苷酶的克隆表达及酶学性质鉴定 *[J]. 中国生物工程杂志, 2019, 39(10): 34-43.
[6] 王曦, 陈熙明, 浦铜良. 溶葡球菌酶高效表达与应用[J]. 中国生物工程杂志, 2017, 37(9): 118-125.
[7] 杨建伟, 薛正莲, 朱昊, 杨蒙, 王洲. ARTP辐照对磷脂酶A1重组质粒的诱变效应[J]. 中国生物工程杂志, 2017, 37(6): 78-85.
[8] 饶菁菁, 景一娴, 邹明月, 胡小蕾, 廖飞, 杨晓兰. 季也蒙毕赤酵母菌尿酸酶基因的克隆、重组表达及表征[J]. 中国生物工程杂志, 2017, 37(11): 74-82.
[9] 曾杰. 优质L-天冬酰胺酶的开发与应用及重组表达研究进展[J]. 中国生物工程杂志, 2017, 37(11): 123-131.
[10] 赵一瑾, 王腾飞, 汪俊卿, 王瑞明. 以CotC为分子载体在枯草芽孢杆菌表面展示海藻糖合酶[J]. 中国生物工程杂志, 2017, 37(1): 71-80.
[11] 田淑翠, 牛延宁, 常忠义, 高红亮, 步国健, 金明飞. 常压室温等离子体(ARTP)诱变茂源链霉菌菌株[J]. 中国生物工程杂志, 2016, 36(9): 47-53.
[12] 吉美萍, 庞艳波, 付丽丽, 那日, 郭九峰, 王志永. γ-聚谷氨酸基因工程研究进展与展望[J]. 中国生物工程杂志, 2016, 36(6): 107-118.
[13] 张映曈, 陈海琴, 宋元达, 张灏, 陈永泉, 陈卫. 卷枝毛霉pyrG基因缺陷突变株的诱变筛选与鉴定[J]. 中国生物工程杂志, 2016, 36(3): 38-42.
[14] 李梦悦, 王腾飞, 汪俊卿, 赵一瑾, 程成, 王瑞明. 海藻糖合酶在毕赤酵母表面的展示[J]. 中国生物工程杂志, 2016, 36(2): 73-80.
[15] 郭玮婷, 张慧, 查东风, 黄汉峰, 黄静, 高红亮, 常忠义, 金明飞, 鲁伟. 产耐高温谷氨酰胺转胺酶菌株的快速筛选方法[J]. 中国生物工程杂志, 2015, 35(8): 83-89.