Please wait a minute...

中国生物工程杂志

CHINA BIOTECHNOLOGY
中国生物工程杂志  2021, Vol. 41 Issue (2/3): 129-137    DOI: 10.13523/j.cb.2010035
综述     
凝血因子VII及其重组表达新进展
王惠临1,2,周凯强2,朱红雨2,王力景1,2,杨仲璠2,*(),徐明波2,曹荣月1,*()
1 中国药科大学生命科学与技术学院 南京 210009
2 北京双鹭药业股份有限公司 北京市重组蛋白及其长效制剂工程技术研究中心 北京 100049
Research Progress of Human Coagulation Factor VII and the Recombinant Expression Systems
WANG Hui-lin1,2,ZHOU Kai-qiang2,ZHU Hong-yu2,WANG Li-jing1,2,YANG Zhong-fan2,*(),XU Ming-bo2,CAO Rong-yue1,*()
1 College of Life Science and Technology, China Pharmaceutical University, Nanjing 210009, China
2 Research Center of Recombinant Protein and Associated Long-acting Preparation Engineering Technology of Bejing Shuanglu Pharmeceutical Co. Ltd., Beijing 100049, China
 全文: PDF(4535 KB)   HTML
摘要:

凝血因子VII是一种维生素K依赖型的单链糖蛋白,在凝血过程中发挥着极其重要的作用,在临床上有广泛的应用,可用于伴有抑制物的血友病、先天性FVII缺乏症、血小板无力症及外科手术或严重外伤导致的创伤出血等止血用途。基因重组技术提供了能够大规模制备人凝血因子VII的有效途径,近年来已尝试并建立了多种人凝血因子VII的重组表达系统。对重组人凝血因子VII蛋白在酵母细胞、哺乳动物细胞、转基因动物这三类表达系统中的发展和应用概况进行了综述,介绍了不同表达系统的特点并比较了FVII在不同哺乳动物细胞系中蛋白质翻译后修饰的差别,为重组人凝血因子VII在重组表达系统上的进一步开发提供参考。

关键词: 人凝血因子VII重组表达系统哺乳动物细胞乳腺反应器    
Abstract:

Human coagulation factor VII is a single chain glycoprotein that is vitamin K-dependent and plays an extremely important role in the process of coagulation,which has been widely used in the clinic. It can be used for hemostatic purposes such as hemophilia with inhibitors,congenital FVII deficiency, thrombocytopenia and traumatic bleeding caused by surgery or severe trauma. The gene recombination technology is an attractive methed which provides more effective ways to produce recombinant human coagulation factor VII on a large scale. In recent years, a variety of recombinant expression systems of human coagulation factor VII have been tried and established. In this paper, it is focused on the development and application of recombinant human coagulation factor VII in the expression systems of yeasts, mammalian cells and transgenic animals and compares the characteristics of post-translational modification of different mammalian cells, so as to provide reference for the further development of recombinant human coagulation factor VII in the recombinant expression system.

Key words: Human coagulation factor VII    Recombination expression systems    Mammalian cells    Mammary bioreactors
收稿日期: 2020-10-28 出版日期: 2021-04-08
ZTFLH:  Q819  
通讯作者: 杨仲璠,曹荣月     E-mail: yangzhongfan@slpharm.com;cpucry@cpu.edu.cn
服务  
把本文推荐给朋友
加入引用管理器
E-mail Alert
RSS
作者相关文章  
王惠临
周凯强
朱红雨
王力景
杨仲璠
徐明波
曹荣月

引用本文:

王惠临,周凯强,朱红雨,王力景,杨仲璠,徐明波,曹荣月. 凝血因子VII及其重组表达新进展[J]. 中国生物工程杂志, 2021, 41(2/3): 129-137.

WANG Hui-lin,ZHOU Kai-qiang,ZHU Hong-yu,WANG Li-jing,YANG Zhong-fan,XU Ming-bo,CAO Rong-yue. Research Progress of Human Coagulation Factor VII and the Recombinant Expression Systems. China Biotechnology, 2021, 41(2/3): 129-137.

链接本文:

https://manu60.magtech.com.cn/biotech/CN/10.13523/j.cb.2010035        https://manu60.magtech.com.cn/biotech/CN/Y2021/V41/I2/3/129

图1  人凝血因子VII(hFVII)氨基酸序列图[2]
图2  人凝血因子VII(hFVII)结构域及翻译后修饰分布图
pdFVII CHO-rhFVII BHK-rhFVII HEK-rhFVII
O-糖基化
(Ser-52/Ser-60)
31% Glc(Xyl)2/Fuc
27% GlcXyl/Fuc
15% Glc/Fuc
56% Glc(Xyl)2/Fuc
7% GlcXyl2
14% Glc/Fuc
62% Glc(Xyl)2/Fuc
7% GlcXyl/Fuc
10% Glc/Fuc
21% Glc(Xyl)2/Fuc
50% Glc/Fuc
12% Glc/-
N-糖基化
(Asn145/Asn322)
非岩藻糖基化无
GalNAc
96%岩藻糖基化无
GalNAc
50%岩藻糖基化,20%
GalNAc末端
83%岩藻糖基化,
有GalNAc
唾液酸化程度 4.06 3.14±0.06 2.96 0.57
γ-羧基化(No.10) 82% 53% 53% 56%
β-羟基化 后三者相似,均大于pdFVII
相关药物研发 血浆提取物 研究中 上市(NovoSeven)
表1  pdFVII与CHO、BHK、HEK细胞重组表达的rhFVII在翻译后修饰上的区别
[1] 刘丹丹, 刘思国, 陈建泉, 等. 人血清白蛋白及其重组表达研究进展. 生物技术通讯, 2016,27(4):572-575.
Liu D D, Liu S G, Chen J Q, et al. Research progress of human serum albumin and their recombinant expression systems. Letters in Biotechnology, 2016,27(4):572-575.
[2] Jurlander B, Thim L, Klausen N K, et al. Recombinant activated factor VII (rFVIIa): characterization, manufacturing, and clinical development. Seminars in Thrombosis and Hemostasis, 2001,27(4):373.
pmid: 11547359
[3] 李敏, 吴日伟. 凝血因子药物市场分析. 中国生物工程杂志, 2017,37(5):133-139.
Li M, Wu R W. The analysis of coagulation factors market. China Biotechnology, 2017,37(5):133-139.
[4] 李晓雷, 张宝玺. 血友病治疗进展. 中国小儿血液与肿瘤杂志, 2018,23(6):329-332.
Li X L, Zhang B X. Advances in hemophilia treatment. Journal of China Pediatric Blood and Cancer, 2018,23(6):329-332.
[5] 冀倩倩, 朱士茂, 吴彦萍, 等. 重组人长效凝血因子Ⅶ药物研发进展. 药学进展, 2019,43(3):226-230.
Ji Q Q, Zhu S M, Wu Y P, et al. Research progress in R&D of recombinant human long-acting coagulation factor VII. Progress in Pharmaceutical Sciences, 2019,43(3):226-230.
[6] Kruse-Jarres R, Kempton C L, Baudo F, et al. Acquired hemophilia A: updated review of evidence and treatment guidance. American Journal of Hematology, 2017,92(7):695-705.
pmid: 28470674
[7] Nurden A T, Fiore M, Nurden P, et al. Glanzmann thrombasthenia: a review of ITGA2B and ITGB3 defects with emphasis on variants, phenotypic variability, and mouse models. Blood, 2011,118(23):5996-6005.
[8] Doherty D, Singleton E, Byrne M, et al. Missed at first Glanz: glanzmann thrombasthenia initially misdiagnosed as von willebrand disease. Transfusion and Apheresis Science, 2019,58(1):58-60.
doi: 10.1016/j.transci.2018.11.008 pmid: 30551951
[9] Man-Chiu P. Clinical use of recombinant human activated factor VII (rFVIIa) in the prevention and treatment of bleeding episodes in patients with Glanzmann’s thrombasthenia. Vascular Health and Risk Management, 2007,3(5):655-664.
[10] Iqbal I, Farhan S, Ahmed N. Glanzmann thrombasthenia: a clinicopathological profile. ournal of the College of Physicians and Surgeons——Pakistan: JCPSP, 2016,26(8):647-650.
[11] Kjalke M, Kjellev S, Rojkjaer R. Preferential localization of recombinant factor VIIa to platelets activated with a combination of thrombin and a glycoprotein VI receptor agonist. Journal of Thrombosis and Hemostasis, 2007,5(4):774-780.
[12] Shams M, Dorgalaleh A, Safarian N, et al. Inhibitor development in patients with congenital factor VII deficiency, a study on 50 Iranian patients. Blood Coagul & Fibrinolysis, 2019,30(1):24-28.
pmid: 30585836
[13] Szczepanik A, Wiszniewski A, Oses-Szczepanik A, et al. Surgery in patients with congenital factor VII deficiency - a single center study. Polski Przeglad Chirurgiczny, 2018,90(5):1-5.
doi: 10.5604/01.3001.0012.0668 pmid: 30426948
[14] 史学良, 罗杰, 方秦模, 等. VII因子治疗严重非血管性出血的临床观察. 中国伤残医学, 2018,26(9):25-27.
Shi X L, Luo J, Fang Q M, et al. Coagulation factor VII treat severe vascular hemorrhage and literature review. Chinese Journal of Trauma and Disability Medicine, 2018,26(9):25-27.
[15] Martinowitz U, Kenet G, Segal E, et al. Recombinant activated factor VII for adjunctive hemorrhage control in trauma. Journal of Trauma and Acute Care Surgery, 2001,51(3):431-439.
[16] Singer D E, Borowsky L H, Regan S S, et al. Reversal strategies and outcomes in patients with atrial fibrillation and warfarin-associated intracranial hemorrhage. Journal of Stroke and Cerebrovascular Diseases, 2020,29(8):104903.
[17] Atas E, Kesik V, Gursel O. Treatment of massive gastrointestinal bleeding occurred during autologous stem cell transplantation with recombinant activated factor VII and octreotide. Journal of Cancer Research and Therapeutics, 2015,11(3):667.
doi: 10.4103/0973-1482.138102 pmid: 26458706
[18] Shimizu Y, Tsuchiya K, Fujisawa N. Risk factors of diffuse alveolar hemorrhage after acute ischemic stroke treated with tissue-type plasminogen activator. The effectiveness of activated recombinant factor VII treatment. Surgical Neurology International, 2020,11:129.
doi: 10.25259/SNI_2_2020 pmid: 32547816
[19] Cosar H, Isik H, Cakir S C, et al. Recombinant activated factor VIIa (rFVIIa) treatment in very-low-birth-weight (VLBW) premature infants with acute pulmonary hemorrhage: a single-center, retrospective study. Paediatric Drugs, 2017,19(1):53-58.
doi: 10.1007/s40272-016-0203-3 pmid: 27826851
[20] Johansson P I, Eriksen K, Nielsen S L, et al. Recombinant FVIIa decreases perioperative blood transfusion requirement in burn patients undergoing excision and skin grafting——results of a single centre pilot study. Burns, 2007,33(4):435-440.
pmid: 17382476
[21] 康喜哲, 金真荣, 李炳善, 等. 用于大量生产人凝血因子VII衍生物的方法:中国,201480058873.6. 2016-07-06[2020-09-28]. http://kns.cnki.net/KCMS/detail/detail.aspx?FileName=CN105745325A&DbName=SCPD2016.
Kang X Z, Jin Z R, Li B S, et al. Methods for mass production of human coagulation factor VII derivatives:Chinese,CN105745325A. 2016-07-06[2020-09-28]. http://kns.cnki.net/KCMS/detail/detail.aspx?FileName=CN105745325A&DbName=SCPD2016.
[22] Berkner K, Busby S, Davie E, et al. Isolation and expression of cDNAs encoding human factor VII. Cold Spring Harbor Symposia on Quantitative Biology, 1986,51(Pt 1):531-541.
[23] 朱琳. 重组人凝血因子Ⅶ的研究进展. 国际生物制品学杂志, 2015,38(1):31-35.
Zhu L. Research progress on recombinant human coagulation factor VII. International Journal of Biologicals, 2015,38(1):31-35.
[24] Wang H, Wang L, Li S, et al. N-Glycan-calnexin interactions in human factor VII secretion and deficiency. The International Journal of Biochemistry & Cell Biology, 2019,113:67-74.
pmid: 31185295
[25] Masroori N, Halabian R, Mohammadipour M, et al. High-level expression of functional recombinant human coagulation factor VII in insect cells. Biotechnology Letters, 2010,32(6):803-809.
doi: 10.1007/s10529-010-0227-7 pmid: 20213530
[26] Mirzaahmadi S, Asaadi-Tehrani G, Bandehpour M, et al. Expression of recombinant human coagulation factor VII by the Lizard Leishmania expression system. Journal of Biomedicine and Biotechnology, 2011,2011:873874.
[27] Xiang G M, Su Y P, Cheng T M, et al. High-yield expression of recombinant mouse coagulation factor VII in methylotrophic yeast Pichia pastoris. Journal of Medical Colleges of PLA, 2006,(5):288-292.
[28] Zahra A M, Amiri F, Mohammadipour M, et al. HEK293 cells overexpressing nuclear factor E2-Related factor-2 improve expression of recombinant coagulation factor VII. Molecular Biotechnology, 2019,61(5):317-324.
[29] 彭林, 李成媛, 熊文典, 等. 凝血因子Ⅶ高表达细胞的高通量筛选方法. 食品与生物技术学报, 2018,37(7):722-726.
Peng L, Li C Y, Xiong W D, et al. High-throughput method for screening recombinant coagulation factor VII expressing Cells. Journal of Food Science and Biotechnology, 2018,37(7):722-726.
[30] 彭林. 重组凝血因子VII在CHO细胞中的高效表达. 无锡:江南大学, 2017.
Peng L. High expression of recombinant coagulation factor VII in Chinese hamster ovary cells. Wuxi: Jiangnan University, 2017.
[31] Li L, Meng H, Zou Q, et al. Establishment of gene-edited pigs expressing human blood-coagulation factor VII and albumin for bioartificial liver use. Journal of Gastroenterology and Hepatology, 2019,34(10):1851-1859.
doi: 10.1111/jgh.14666 pmid: 30884543
[32] Corrêa De Freitas M C, Bomfim A D S, Mizukami A, et al. Production of coagulation factor VII in human cell lines Sk-Hep-1 and HKB-11. Protein Expression and Purification, 2017,137:26-33.
[33] Hwang G, Müller F, Rahman M A, et al. Fish as bioreactors: transgene expression of human coagulation factor VII in fish embryos. Marine Biotechnology, 2004,6(5):485-492.
doi: 10.1007/s10126-004-3121-2 pmid: 15129328
[34] 杜福良, 杨澜, 薛非, 等. 利用家兔乳腺反应器平台生产重组人第七凝血因子的方法:中国,201310342562.X. 2014-01-01[2020-09-28]. http://kns.cnki.net/KCMS/detail/detail.aspx?FileName=CN103484497A&DbName=SCPD2014.
Du F L, Yang L, Xue F, et al. The method of producing recombinant human coagulation factor VII by rabbit mammary gland reactor platform:Chinese,CN103484497A. 2014-01-01[2020-09-28]. http://kns.cnki.net/KCMS/detail/detail.aspx?FileName=CN103484497A&DbName=SCPD2014.
[35] 苏鹏, 龚国利. 重组蛋白表达技术的研究进展. 中国酿造, 2016,35(10):9-12.
Su P, Gong G L. Research progress on the recombinant protein expression technology. China Brewing, 2016,35(10):9-12.
[36] 黄浩, 王阳, 堵国成, 等. 重组蛋白微生物表达系统的研究进展. 生物产业技术, 2019,( 3):36-43.
Huang H, Wang Y, Du G C, et al. Research progress in microbial expression systems for recombinant protein production. Biotechnology & Business, 2019,( 3):36-43.
[37] 王栋. 重组人凝血因子Ⅶ在真核细胞中的表达研究. 北京: 中国人民解放军军事医学科学院, 2004.
Wang D. Expression and identification of recombinant human coagulation factor VIIa in Eukaryotic cells. Beijing: Academy of Military Medical Sciences, 2004.
[38] Brooks S A. Protein glycosylation in diverse cell systems: implications for modification and analysis of recombinant proteins. Expert Review of Proteomics, 2014,3(3):345-359.
[39] Karbalaei M, Rezaee S A, Farsiani H. Pichia pastoris: a highly successful expression system for optimal synthesis of heterologous proteins. Journal of Cellular Physiology, 2020,235(9):5867-5881.
[40] Gvozdenov M, Pruner I, Tomic B, et al. The effect of FII c.1787G>a (prothrombin Belgrade) mutation on prothrombin gene expression in vitro. Molecular Biology, 2017,51(1):49-52.
[41] Kovnir S V, Orlova N A, Shakhparonov M I, et al. A highly productive CHO cell line secreting human blood clotting factor IX. Acta Naturae, 2018,10(1):51-65.
pmid: 29713519
[42] 李德款, 张航, 聂艳桃, 等. 重组人凝血因子Ⅸ在CHO细胞中的表达和纯化. 中国生物制品学杂志, 2019,32(11):1243-1246.
Li D K, Zhang H, Nie Y T, et al. Expression of human coagulation factor IX in CHO cells and purification of expressed product. Chinese Journal of Biologicals, 2019,32(11):1243-1246.
[43] Grinnell B W, Walls J D, Marks C, et al. Gamma-carboxylated isoforms of recombinant human protein S with different biologic properties. Blood, 1990,76(12):2546-2554.
[44] Enjolras N, Perot E, Le Quellec S, et al. In vivo efficacy of human recombinant factor IX produced by the human hepatoma cell line HuH-7. Haemophilia, 2015,21(4):e317-e321. DOI: 10.1111/hae.12688.
pmid: 25981983
[45] Sam M R, Zomorodipour A, Haddad-Mashadrizeh A, et al. Functions of the heterologous Intron-Derived fragments intra and extra factor IX-cDNA coding region on the human factor IX expression in HepG2 and Hek-293T cells. Iranian Journal of Biotechnology, 2018,16(2):154-163.
[46] de Castilho F A, Fontes A, Gonsales N, et al. Stable and high-level production of recombinant Factor IX in human hepatic cell line. Biotechnology and Applied Biochemistry, 2011,58(4):243-249.
doi: 10.1002/bab.32 pmid: 21838798
[47] Kumar S R. Industrial production of clotting factors: challenges of expression, and choice of host cells. Biotechnology Journal, 2015,10(7):995-1004.
[48] Bolt G, Steenstrup T D, Kristensen C. All post-translational modifications except propeptide cleavage are required for optimal secretion of coagulation factor VII. Thrombosis and Haemostasis, 2007,98(5):988-997.
doi: 10.1160/th07-05-0332 pmid: 18000603
[49] Bolt G, Kristensen C, Steenstrup T D. More than one intracellular processing bottleneck delays the secretion of coagulation factor VII. Thrombosis and Haemostasis, 2017,100(2):204-210.
pmid: 18690338
[50] Bolt G, Kristensen C, Steenstrup T D. Posttranslational N-glycosylation takes place during the normal processing of human coagulation factor VII. Glycobiology, 2005,15(5):541-547.
pmid: 15616124
[51] B?hm E, Seyfried B K, Dockal M, et al. Differences in N-glycosylation of recombinant human coagulation factor VII derived from BHK, CHO, and HEK293 cells. BMC Biotechnology, 2015,15(1):87-101.
[52] Iino M, Foster D C, Kisiel W. Functional consequences of mutations in Ser-52 and Ser-60 in human blood coagulation factor VII. Archives of Biochemistry and Biophysics, 1998,352(2):182-192.
[53] Bjoern S, Foster D C, Thim L, et al. Human plasma and recombinant factor VII. Characterization of O-glycosylations at serine residues 52 and 60 and effects of site-directed mutagenesis of serine 52 to alanine. Journal of Biological Chemistry, 1991,266(17):11051-11057.
[54] Fenaille F, Groseil C, Ramon C, et al. Mass spectrometric characterization of N- and O-glycans of plasma-derived coagulation factor VII. Glycoconjugate Journal, 2008,25(9):827-842.
[55] Ellgaard L, Molinari M, Helenius A. Setting the standards: quality control in the secretory pathway. Science, 1999,286(5446):1882-1888.
doi: 10.1126/science.286.5446.1882 pmid: 10583943
[56] Ito Y, Hagihara S, Matsuo I, et al. Structural approaches to the study of oligosaccharides in glycoprotein quality control. Current Opinion in Structural Biology, 2005,15(5):481-489.
pmid: 16154739
[57] Thim L, Bjoern S, Christensen M, et al. Amino acid sequence and posttranslational modifications of human factor VIIa from plasma and transfected baby hamster kidney cells. Biochemistry, 1988,27(20):7785-7793.
[58] Nishimura H, Kawabata S, Kisiel W, et al. Identification of a disaccharide (Xyl-Glc) and a trisaccharide (Xyl2-Glc) O-glycosidically linked to a serine residue in the first epidermal growth factor-like domain of human factors VII and IX and protein Z and bovine protein Z. The Journal of Biological Chemistry, 1989,264(34):20320-20325.
[59] Jurlander B, Thim L, Klausen N K, et al. Recombinant activated factor VII (rFVIIa): characterization, manufacturing, and clinical development. Semin Thromb Hemost, 2001,27(4):373-384.
doi: 10.1055/s-2001-16971 pmid: 11547359
[60] Morfini M, Jiménez-Yuste V, Eichler H, et al. Pharmacokinetic properties of two different recombinant activated factor VII formulations. Haemophilia, 2012,18(3):431-436.
[61] Sutkeviciute I, Mistiniene E, Sereikaite J, et al. The influence of different glycosylation patterns on factor VII biological activity. Biochimie, 2009,91(9):1123-1130.
doi: 10.1016/j.biochi.2009.05.015 pmid: 19524011
[62] 张全爱, 赵峰梅, 曹鹏程, 等. 重组人凝血因子Ⅶ在HEK293细胞中的瞬时表达. 山西科技, 2020,35(2):17-21.
Zhang Q A, Zhao F M, Cao P C, et al. Transient expression of recombinant human coagulation factor VII in HEK293 cells. Shanxi Science and Technology, 2020,35(2):17-21.
[63] Vermeer C. Comparison between hepatic and nonhepatic vitamin K-dependent carboxylase. Haemostasis, 1986,16(3-4):239-245.
pmid: 3489656
[64] Lu R, Zhang T, Song S, et al. Accurately cleavable goat beta-lactoglobulin signal peptide efficiently guided translation of a recombinant human plasminogen activator in transgenic rabbit mammary gland. Biosci Rep, 2019,39(6):1-13.
[65] Chevreux G, Tilly N, Leblanc Y, et al. Biochemical characterization of LR769, a new recombinant factor VIIa bypassing agent produced in the milk of transgenic rabbits. Haemophilia, 2017,23(4):e324-e334.
[66] Srivastava A, Santagostino E, Dougall A, et al. WFH Guidelines for the management of hemophilia. 3rd ed. Haemophilia, 2020,26(S6):1-158.
[1] 苏爽,金永杰,黄瑞晶,李剑,徐寒梅. 哺乳动物细胞灌流培养工艺研究进展[J]. 中国生物工程杂志, 2019, 39(3): 105-110.
[2] 郭玉蕾,唐亮,孙瑞强,李尤,陈依军. 高通量微型生物反应器的研究进展[J]. 中国生物工程杂志, 2018, 38(8): 69-75.
[3] 徐洪记, 张兵兵. 提高哺乳动物工程细胞抗凋亡能力的基因策略[J]. 中国生物工程杂志, 2012, 32(6): 104-108.
[4] 惠开元, 高向东, 徐晨. 单克隆抗体制备的细胞工程学研究进展[J]. 中国生物工程杂志, 2012, 32(02): 90-95.
[5] 刁勇. 仅基于RNA元件构建可诱导哺乳动物细胞基因表达的调控系统[J]. 中国生物工程杂志, 2011, 31(12): 120-125.
[6] 彭伍平 仇华吉 . 重组杆状病毒:一种新型哺乳动物细胞基因转移载体[J]. 中国生物工程杂志, 2007, 27(1): 126-130.
[7] 杨海,李世崇,陈昭烈. 外源基因高表达细胞株的高通量分选方法[J]. 中国生物工程杂志, 2006, 26(0): 186-190.
[8] 徐宏武. 现代生物高技术的企业特点与质量管理[J]. 中国生物工程杂志, 1995, 15(5): 8-12.
[9] 康毅滨, 吴晓晖, 魏勇, 柴建华. 哺乳动物人工染色体MAC-基因治疗的新载体[J]. 中国生物工程杂志, 1995, 15(4): 18-21.
[10] 张旭. 蛋白质糖基化工程[J]. 中国生物工程杂志, 1995, 15(2): 30-35.
[11] 江北. 《大规模哺乳动物细胞培养技术》[J]. 中国生物工程杂志, 1992, 12(4): 64-64.
[12] 曾祎青, 吴鹤龄. 报告基因——哺乳类动物遗传学研究的新工具[J]. 中国生物工程杂志, 1992, 12(3): 6-14.
[13] 江北. 《大规模哺乳动物细胞培养技术》[J]. 中国生物工程杂志, 1992, 12(3): 64-64.
[14] 曾祎青, 吴鹤龄. 报告基因——哺乳类动物遗传学研究的新工具[J]. 中国生物工程杂志, 1992, 12(3): 6-14.
[15] PaulS.Miller, 熊克勇. 用甲基化的寡聚核苷酸作反义制剂[J]. 中国生物工程杂志, 1992, 12(2): 15-19.